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Regions of anomalous localized resonance, such as occurring near superlenses, are
shown to lead to cloaking effects. This occurs when the resonant field generated by a
polarizable line or point dipole acts back on the polarizable line or point dipole and
effectively cancels the field acting on it from outside sources. Cloaking is proved in the
quasistatic limit for finite collections of polarizable line dipoles that all lie within a
specific distance from a coated cylinder having a shell permittivity e, =—¢,, =—¢. where
&y is the permittivity of the surrounding matrix, and ¢. is the core permittivity.
Cloaking is also shown to extend to the Veselago superlens outside the quasistatic
regime: a polarizable line dipole located less than a distance d/2 from the lens, where d
is the thickness of the lens, will be cloaked due to the presence of a resonant field in
front of the lens. Also a polarizable point dipole near a slab lens will be cloaked in the
quasistatic limit.

Keywords: cloaking; localized resonance; superlenses; negative refraction

1. Introduction

Nicorovici et al. (1994) found that a coated cylinder, now called a cylindrical
superlens, with a core of dielectric constant ¢.= 1 and radius r. and a shell with
dielectric constant e, =—1+ie! and outer radius r, would in the limit & — 0 be
invisible to any applied quasistatic transverse magnetic (TM) field. Here we show
that not only is the lens invisible in this limit, but so too are cylindrical objects,
or at least any finite collection of polarizable line dipoles, that lie within a radius
ry =+/13 /1. of the cylindrical superlens.

In that paper some other remarkable properties were found to hold in the limit
el — 0. First a cylinder of radius r, and permittivity e, #1 placed inside the
cylindrical shell would to an outside observer appear magnified by a factor of
h=r2/r? and respond like a solid cylinder of permittivity e, of radius r, = r,h=
r2/r. to any quasistatic TM applied fields that do not have sources within the
radius r,. Second, again when ¢, # 1, a dipole line source positioned outside the
coated cylinder at a radius 7 less than ry;, = r2/r2 = r? /r, would have an image
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dipole line source (ghost source) lying outside the cylinder at the radius
7o =12/19> 1y Specifically, because there cannot be singularities in the field
outside the cylinder, apart from the original line dipole source, at radii greater
than 7; the image dipole was found to appear to be like an actual line source with
the approximation becoming better as ¢/ — 0 but inside the radius 7, numerical
computations showed that the field had enormous oscillations, which grew as
el —0.

A mathematically very similar phenomena was implied by the bold claim of
Pendry (2000) (see also the reviews of Pendry (2004) and Ramakrishna (2005))
that the Veselago slab lens (Veselago 1968), consisting of a slab of material
having thickness d, relative electric permittivity e,=—1, relative magnetic
permeability u,=—1, would act as a superlens: a line (or point) dipole source
located at distance d; in front of the Veselago lens would when d, < d, have a
line image dipole source (ghost source) lying outside the lens at a distance
d —dy from the back of the lens. Again there cannot be singularities in the field
lying outside the lens apart from the original line, or point, dipole source as
emphasized by Maystre & Enoch (2004) among others. For the lossless
Veselago lens Garcia & Nieto-Vesperinas (2002) and Pokrovsky & Efros (2002)
claimed the fields lost their square integrability throughout a layer of thickness
2(d—dy) centered on the back interface, although it is not clear to us whether
the claimed divergence within the entire layer in the lossless case is an artifact
of the use of plane wave expansions, in the same way that Taylor series diverge
outside the radius of convergence, but other expansions have different regions
of convergence. One should allow for some small loss, taking e,=—1+ie’,
us=—1+iu! and consider what happens when ¢/ and u! are very small. At
distances greater than d—d; from the back of the lens the image source
appears to be like an actual line (or point) source with the approximation
becoming better as (e, u) — 0 but at distances less than d —d, from the back
of the lens the field has enormous oscillations, which grow as (e, u)— 0.
Contrary to the conventional picture, the field also has enormous oscillations in
front of the lens as shown by Podolskiy et al. (2005) and these fields are the
ones responsible for cloaking (see also Rao & Ong (2003), Shvets (2003),
Merlin (2004) and Guenneau et al. (2005)) whose investigations provided some
evidence of large fields in front of the lens). We will see here that in fact the
field generated by a constant amplitude line dipole source diverges as &, u? — 0
within a distance of d—d, from either the front or back interface. This
generalizes the result of Milton et al. (2005) where the same regions of field
divergence were found for the quasistatic equations. As that paper will be
frequently referenced, it will be denoted by the acronym MNMP. We will find
that a polarizable line dipole less than a distance d/2 from the Veselago lens
becomes cloaked in the limit as (&, u!) — 0. Furthermore we will see that, in the
quasistatic limit, a polarizable point dipole outside a slab having electric
permittivity &, =—1+ie/, and any magnetic permeability, becomes cloaked as
el = 0.

Following Milton (2002), §11.7, and MNMP we say an inhomogeneous body
exhibits anomalous localized resonance if as the loss goes to zero (or for static
problems, as the system of equations lose ellipticity) the field magnitude
diverges to infinity throughout a specific region with sharp boundaries not
defined by any discontinuities in the moduli, but the field converges to a smooth
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Cloaking effects associated with resonance 3029

field outside that region. A region where the field diverges will be called a region
of local resonance. We will see that cloaking occurs when a polarizable line or
point dipole interacts with the resonant field that is generated by the
polarizable line or point dipole itself, and that the effect of the resonant region
is to cancel the field acting on the polarizable line or point dipole from outside
sources. A region where a polarizable line or point dipole is cloaked will be
called a cloaking region.

Cloaking can also be regarded as a consequence of energy considerations: if
the polarizable line or point dipole was not cloaked then the energy sources in
the system would have to be infinite. As shown in the paper MNMP, and as
stemmed from a suggestion of Alexei Efros (2005, personal communication), a
line dipole source with a fixed dipole moment less than a distance d/2 from the
slab lens would could cause infinite energy loss. (We will see this is true not just
for the quasistatic solution, but also for the solution to Maxwell’s equations for
the Veselago lens.) Any realistic dipole source (such as a polarizable line source)
within this region must have a dipole moment which vanishes as &/ — 0. As
the lens provides a perfect image of the source in the limit & — 0, at least
further than a distance d from the slab, we conclude that the dipole source
will have a vanishingly small effect on the field further than a distance d from
the slab.

We remark that the cloaking effects discussed here extend to static
magnetoelectric equations, as implied by the equivalence discussed in §6 of
MNMP that follows from earlier work of Cherkaev & Gibiansky (1994) and
Milton (2002), §11.6. There it is shown that the two-dimensional quasistatic
dielectric equations in any geometry (and with possible source terms) can be
transformed to a set of magnetoelectric equations (with corresponding source
terms) with a symmetric real positive definite tensor entering the constitutive
law. Therefore properties like superlensing and cloaking which hold for the
quasistatic dielectric equations automatically also hold for the equivalent
magnetoelectric equations.

2. Some simple examples of cloaking in the quasistatic limit

First we present an example which shows that a polarizable line with
polarizability e (and possibly a source term) can be cloaked when immersed in
a TM field surrounding a coated cylinder with inner radius r,, outer radius 7,
and with cylinder axis £ = y= 0. The polarizable line is placed along == 1, and
y=0, where 7y>r,. Suppose (E,(z,y),E,(z,y),0) is the field without the
polarizable line present due to:

(i) Fields generated by fixed sources not varying in the Z direction lying
outside the radius 7, =1?/r. when e, #¢,,, and the radius ry =137
when ¢, = ¢,,. (Here we use Z for the zcoordinate to avoid confusion with
z=x+1y). We assume these sources are not perturbed when the
polarizable line is introduced.

(ii) Fields generated by the coated cylinder due to its interaction with these
fixed sources.
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Let ¢, &, and €. denote the permittivity in the matrix, shell and core, and let
us set

_ &m—¢& (es + 80)(81(11 + es)

= = 6e'? 2.1
em Fe. (es—e)(em—e&s) e (2.1)

where ¢ is real and positive. We assume that ¢, and ¢, remain fixed with ¢, real

and positive, and with ¢, possibly complex (with non-negative imaginary part)

but not real and negative, and that e, approaches —¢,, along a trajectory in the

upper half of the complex plane in such a way that 6 — 0 but ¢ remains fixed.
When ¢ is close to —¢,, equation (2.1) implies

es = (—1 +206¢'? /n)e,, when e, #e,, 22)
2.2
= (—1 + 2iv/6e'%/?)e,, when e, = ¢y,
and so we have
0= e+ enllnl/(26) when e, ey,
(2.3)
= ’85 + 8111|2/(4812I1) When (C:C = €II]'

Thus, for small ¢ the trajectory approaches —¢,, in such a way that the argument
of ¢, + ¢, is approximately constant.

Let us drop the Z field component of the electric field since it is zero for TM
fields. The field (EY, Eg) acting on the polarizable line has two components:

(Ey, E)) = (E, + E;, E, + Ey), (2.4)
where

Ex = Ex(T070)7 Ey = Ey(T070)7 E; = E;;(T():O)a E; = E[Z(ﬁ): 0)7 } ( )
2.5
(Bx(z,9), By(2,y)) = (—0Viy(z, y) /02, —0 Viy(2, ) /dy),

and Vi (z,y) is the (possibly resonant) response potential in the matrix
generated by the coated cylinder responding to the polarizable line itself (not
including the field generated by the coated cylinder responding to the other fixed
sources). The field (E7, Ej;) must depend linearly on the dipole moment of the
polarizable line, and in fact, as we will see shortly, this dependence has the form

B\ e
(E;;) = ¢(0) (—ko ) , (2.6)

in which, following the notation of MNMP, k° and k° are the (suitably
normalized) dipole moments of the polarizable line (£ gives the amplitude of the
dipole component which has even symmetry about the z-axis while k° gives the
amplitude of the dipole component which has odd symmetry about the a-axis).
We will see that |c(6)| can diverge to infinity as 6 — 0, and that when this
happens the polarizable line becomes cloaked. Figure 1 shows the cloaking with a
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Cloaking effects associated with resonance 3031

fixed dipole line source acting on a polarizable line which is in the cloaking region
of the cylindrical superlens. For comparison figure 2 has the polarizable line
outside the cloaking region.

Now if a denotes the polarizability tensor of the line (which need not be
assumed proportional to I') and we allow for the fact that the polarizable line
could have a fixed dipole source term, then we have

=a + , (2.7)
—k° E) —kg

where the source terms A and kj are assumed to be fixed. This implies

ke—Eg”qtake+k8 2.8
(o) o) o)+ (L) e

which when solved for the dipole moment (k°,—£°) gives
k¢ E, kS
= a, + , (2.9)
—k° E, —k

. LK LK
o = [ — (o)1, (_ko>=[1—c<é>a] (_k> (2.10)
% 0

where

are the ‘effective polarizability tensor’ and ‘effective source terms’.
Notice that when |c(6)| is very large we have

—I kS —al [ K
st () (5) e

So in this limit the effective polarizability tensor has a very weak dependence on
a (unless a has one or more very small eigenvalues) while the effective source
term has a strong dependence on a! Both expressions tend to zero as |c(d)| — oo,
which explains why cloaking occurs.

It is instructive to see what happens to the local field (EE , Eg ) acting on the
polarizable line as |¢(6)|— . For simplicity let us suppose kj=kj=0 and
a=ol. Then from equations (2.4), (2.6), (2.9) and (2.10) we see that

c0)B, _ K
T—¢(6) 1—ac()’

E)=E, + c(0)k = E, + (2.12)
o

goes to zero as |c¢(6)| — o, and similarly so too does Eg . This explains why the

‘effective polarizability’ vanishes as |c(0)| — oo: the effect of the resonant field is

to cancel the field (E,, E,) acting on the polarizable line.

To obtain an explicit expression for ¢(6) we have from equations (2.5), (3.9)
and (3.10) of MNMP that

Vin(z, ) = [fa(2) + fu(2)]/2 + [fia(2) = fu(2)]/(2D), (2.13)
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Figure 1. Numerical computations of equipotentials for (a) Re[V(z)] and (b) Im[V(z)] for a
cylindrical lens with &, = e, =1 and &, =—14 107"%, and with r,=2, r,=4, r, =8 and ry = 5.66.
There is a fixed dipole source with (kf, k7) = (1,0) at z=7, chosen to be between r, and r,. There is
a polarizable dipole with «=2 and (&, kj) =0 at z=ry=>5 chosen to be in the cloaking region
(located at the point just to the right of the outermost resonant region). In both figures both the
coated cylinder and the polarizable dipole are essentially invisible outside the cloaking region and
do not disturb the dipole potential surrounding the fixed source. The computations show that the
polarizable dipole has a very small moment k°=—6.31 X 1077 + 2.30 X 107% and £° = 0. The solid
red regions are below a low cutoff equipotential, while the solid blue regions are above a high cutoff
equipotential.

5 250 25 5 75 10 5 25 0 25 5 75 10

Figure 2. Same as for figure 1 except the fixed dipole source and the polarizable dipole have been
moved to the right by 2 units to 7, =9 and to ry =7, respectively. Equivalently, the cylindrical
lens has been moved to the left by 2 units while keeping the fixed dipole source and the
polarizable dipole in the same position. The polarizable dipole is now visible because it is outside
the cloaking region. The computations show that the polarizable dipole has a large moment
k=0.5+18.39X107% and k°=0.

where z=z+ iy and for p=-e,o0

D 2 DSl 2
P(z) - gk S(67 T*/(TOZ)) . qkPoe nscS(aa T /(TOZ)) 7 (214>
" T0Msc To

in which ¢=1 for p=e and ¢=—1 for p=o0 and

ol 0 2
_ &7 ¢& — w Ts
Nsc e, + 8c’ ( aw) Q=Zl 1+ 6e1¢h2’ TCQ ( )
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Figure 3. Numerical computations of equipotentials for Re[V(z)] for a cylindrical lens with
en=¢ =1 and eg=—1+0.01i, and with r,=2, r,=4, r,=8, and 74 =5.66. A uniform field
E=(—1,0) acts on the system. In the figure on the left the polarizable line dipole with a=2
and (k§, ky) =0 is located close to the lens at 75 =4.166 and it along with the cylindrical lens
are essentially invisible to the uniform field. The computations show that the polarizable line
dipole has £°=0.000012 —0.00066i and k°=0. In the figure on the right the polarizable line
dipole is located outside the cloaking region at 1, =5.95 and significantly perturbs the uniform
field. The computations show that the polarizable line dipole has k°=—1.68 —0.74i and £°=0.

Differentiating equation (2.13) gives

Ei(z,y) = =Ifi (2) + £l (2)]/2 = [f (=) = &2/ (2)]/ (1), } (2.16)
Ey(z,y) = —ilfi(2) =f (2)]/2 = fa/ (=) + &/ (2)]/2, '
where
/ _ _ qkprfsl(éa TZ/(TOZ)) qkprséewnscs/(é) TSQ/(T’OZ))
f11101 (z) =d 11101(z)/dz - T02Z2nsc + ngz ’ (2’17)
in which
, _dS(6,w) X !
§'(6,w) =—_2 _;1 Tl (2.18)

These expressions simplify if z is real since then f2'(2)—f(2)=0 and
(Er, Ej) = (£ (2),— 2 (2)). In particular with z=rj, we obtain equation (2.6)
with
C((S) - rfsl(i’ TE/TS) _ rgaei¢nSCS;(57 7“52/7”8) . (219)
ToMsc o

So far no approximation has been made.
To obtain an asymptotic formula for c¢(6) when 6 is small we use the
approximations

S w) =—— 56, w) ~——

T 1= for |w| <1, (2.20)
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implied by lemma 3.1 of MNMP, and the approximations
5(5, w) ~ ¢ log w log 6/log h T(w),

Sl(é7 w) z—[log (3/(11) log h)]e—log w log 6/log hT(w) 4 o log wlog 6/log h T’(U))
=—{log 6/ (w log h)le™'% 18 18 L T (),

(2.21)
which hold for A> |w|> 1 and are implied by equation (3.22) of MNMP, where

w’ , 2w’
T(w) = — T'(w) = —_ 2.22
(w) jzz_:w 1+ e?h/ (w) =% 1+ e?h (2.22)
and in making the last approximation in equation (2.21) we have assumed that 6
is so small that |log 4| is very large. (It should be stressed that although we are
assuming extremely small loss here, the polarizable line dipole can still be
cloaked at moderate loss: see figure 3.) Let us first treat the case where ¢, is fixed
and not equal to ¢, and 1y < r,. Then we have n,, =1/n and substituting these
approximations in equations (2.14) and (2.19) and keeping only the terms which
are dominant because ¢ is very small gives, for 72/r, > |z|> r,
p(z) ~ _qkpne[log z—log(r2/ry)]log 6/log hTo_l T(TE/(TOZ)), (223)

m

which is equivalent to equation (3.33) of MNMP, and implies

qkpn IOg(S o log(r/(21)lo og hp
ff;( ) 21 log h to8(r (eru)log 4/log & ( /(TOZ))7 (224)
and
log 6
¢(9) = . lzi h o2 lostr /o ooz g (7”3/7"3)- (2.25)

We see that |¢(6)] — o as 6 = 0 when ry < r,. Consequently both the ‘effective
polarizability tensor’ and the ‘effective source terms’ approach zero in the limit
60— 0. For simplicity let us suppose a= al. Then when ¢ is very small from
equations (2.9) and (2.11) we have

K =[-E,—a'k/c(6), K =[BE,—o "k]/c(6). (2.26)

Thus, the resonant potential associated with the polarizable line has, from
equation (2.23),

fo = (B, + o kg |neltos =iostrs/mlllos /o by (12 (1 2)) / 6) (2.27)
= [E, + K)o/ 008 he 200 (42 /(1 2))log b/ (T(r /73 )log 6),

where v, =—2m log h/log 6 is the angular distance between peaks in the resonant
potential and z= re'’. Similarly we have

fin = (B, = kg)os s R0 oy (12 f (ry2) log b/ (T (72 /7i})log 8). (2.28)

Thus as 6 — 0 these resonant potentials in the matrix converge to zero in the
region r> ry but diverge to infinity with increasingly rapid angular oscillations
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for r, < r <ry. (This is to be contrasted with the resonant potential in the matrix
associated with a line dipole having fixed £° and £°, which as can be seen from
equation (2.23) diverges to infinity in the much larger region r, < r<r2/n).)
A simple calculation, based on substituting the formulae (2.26) and (2.25) into
the formula (3.35) and (3.37) in MNMP for the resonant potentials in the shell
and core, shows that the field associated with the polarizable line is resonant in
the entire annulus 72/7, < r < 1, and converges to zero outside this annulus.

Suppose the source outside is a line dipole with a fixed source term (k{, k7) =
(k7,0) located at the point (r,0), where r; > r,> 1. When r; is chosen with
r2/1y> 1, > r, the polarizable line will be located within the resonant region
generated by the line source outside. One might at first think that a polarizable
line placed within the resonant region would have a huge response because of the
enormous fields there. However, we will see that the opposite is true: the dipole
moment of the polarizable line still goes to zero as 6 — 0. From equations (2.6),
(2.16) and (2.24), with ry replaced by 7y, the field at the point (7y,0) when the
polarizable line is absent will be

E, = ¢(0) 1, Ey(a:, y) =0, (2.29)
where
N10g 0 yoa(12/(ryr))log 8/1og h s, 2
o)~—>=> S\ /\T0T1) )08 g . 2.30
Cl( ) 7’07’1 log he (T*/(TOTI)) ( )

This and equation (2.26) implies the polarizable line has a dipole moment

K =B, + o K]/ c(6) =—c1 (6)}/<(0)

2
Lwalogm/m/mg e (2.31)
T ( */TO)

So k° scales as 0'°8(/1)/18 b which goes to zero as 6 — 0 but fairly slowly when r
and 1, are both close to r,. If the source or sources, are outside the critical radius
Teit = 72 /72 then there are no resonant regions assomated with these sources and
both & and k° will scale like 1/¢(8), i.e. as —02108(n/m)/108 1 /1665 wwhich goes to
zero at a faster rate as 6 — 0, but still slowly when 7y is close to 7,. On the other
hand when ry is close to r, we have r,/ry= Vvh and this latter scaling is
approximately —6/log 6 ~—¢. /log ¢! which is quite fast.

Let us examine more closely what happens when 7, approaches r, while
keeping ¢ fixed (here ¢ is not necessarily small). Then 72/72 is close to h and the

series S'(6, 72 /1) is close to diverging for any fixed 6. When { = w/h is close to 1
then equation (2.18) implies

- I d < n —&)
S'(6 = — sl : 2.32
(6, w) 1¢h Z % oei?h d¢ Z em T & )( —0)*h’ (2:32)
and as a result from equation (2.19) we have
r2S'(o, rf/rQ) —12 (e — &) —(em — &)
c(6) =— 0 = =, (2.33)
To Nsc ( +8 )(TO _Ts) 4(8m +€s)(7ﬁ0_7ns)
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(b)

4 2 0 2 4 6 8 4 2 0 2 4 6 8

Figure 4. Numerical computations of equipotentials for (a) Re[V(z)] and (b) Im[ V()] for a cylindrical
lens with &, = ¢, =1 and &, = —1+ 1072, and with r,=2, r,=4, r, =8, and 74 =5.66. There is a
constant energy source with k°=1/4/Im(c(6))=0.00066 and k°=0 at z= 1y = (1, + ) /2= 4.83,
chosen to be midway between 7, and 7. The fields are very small outside the cloaking region.

which diverges as 1y — 7, and is asymptotically independent of r. and ¢.. Thus,
the polarizable line dipole becomes cloaked so long as ¢, # ¢,,. This cloaking is not
due to anomalous localized resonance, as can be seen by considering a polarizable
line or point dipole in a material of permittivity ¢,, outside a half-space filled with
material having relative permittivity &,. In this system the cloaking is due to the
interaction of the polarizable line dipole with its image line dipole, and the effect
is magnified when ¢, is close to —e¢,,.

The asymptotic analysis is basically similar when e.=e¢, and 1y <ry =
\/13/r.. Then ny =ie7%/2/1/6 and from equations (2.14), (2.19), and (2.21) we
have

lg(z) ~ iqkpei(i)/Qe[log 2—log(r, 1,/ 1y)]log 6/log h?"o_l T(TE/(T’OZ)), (234)

which is equivalent to equation (3.34) of MNMP, and

—ie'*?1og 6
=—————¢€

c —log(r.,/13)log 6/log h T(TE/T&), (235)

rilog h

which diverges as 6 = 0 when 7, < 7. When all the sources lie outside the critical
radius 7, so they do not generate any resonant regions in the absence of the
polarizable line, both &° and k° will scale as 1/¢(6), i.e. as 6'°8%™/1)/8 1 /165 5 as
06— 0. When r, is close to r, we have r,r,/r¢ =+/h and this latter scaling is
approximately —/8/log 6 ~—¢” /log ¢!, which is the same as when e #e,,.
Figure 3a shows the cloaking with uniform field acting on a polarizable line which
is close to the cylindrical superlens. For comparison figure 3b has the same
polarizable line outside the cloaking region. By substituting equation (2.26) in
equation (2.34) we obtain

ﬁ%(z) ~ _[Ex + Oé_l kg]ieid)/Qe[logz—log(r*rs/ro)]logé/loghro—l T(TE/(T@Z))/C(&)

=B, + o ' K§)olst/mfoshe =20 w0 (02 /(oY log b/ (T(r2 /13 )log ), (2.36)

Proc. R. Soc. A (2006)



Cloaking effects associated with resonance 3037

-4 2 0 2 4 6 8

Figure 5. Same as for figure 4 except now the coated cylinder has e.=3 giving k°=
1/4/Im(¢(6)) = 0.000022. Again the fields are very small outside the cloaking region.

which is the same final expression as in equation (2.27). Likewise equation (2.28)
still holds. It follows from these expressions and similar analysis based on
equation (3.36) and (3.37) of MNMP that as 6—0 the resonant potentials
diverge with increasingly rapid oscillations in the two non-overlapping annuli
19> 1> 12/1 and 1,1y /1, > r> 1,73/ 19. Outside these annuli the field converges to
the field generated by the fixed sources.

As another interesting example, let us suppose that a single line dipole energy
source with, for simplicity, £° = 0 is placed in the cloaking region, and that k° is
real and adjusted so that the electrical power W, dissipated in the coated
cylinder remains constant as the loss goes to zero. Specifically using the identity
(4.10) in MNMP we keep

Wy = (w/2)J dz dy e" E(z, y)- E(z, y) = wre, ki Tm[EY], (2.37)

|2l<n,

fixed, where the two-dimensional integral is over the area of the coated cylinder
(where the loss is) and E! is the local field acting on the source, which because
there are no other sources present is just field E, generated by the dipole
source alone. Since from equation (2.6) we have that E; = ¢(0)k°, we deduce
that

K =/ W, /{wme,Im[c(6)]}. (2.38)

As a consequence when ¢, = ¢, we have from equations (2.34) and (2.35) that

_WO log h
wme,, (log 6)Re[el?/2 T (r2 /12)]
(2.39)

fl?l(z) ~ iei¢/26log(r/r#)/log he—27rit9/70 T(TE/(T‘OZ))\/

which, as 6 = 0, diverges when r, <r <1y, but converges to zero for r>r,. By
similar analysis, based on equations (3.36) and (3.37) of MNMP we see that the
field is resonant in the two touching annuli r, > r> /o7y and /713> 1> r
where r# = /r3/r, and converges to zero outside these annuli: see figure 4.
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When ¢, # ¢, we have from equations (2.23) and (2.25) that the resonant field
in the matrix is

. log h
fi%(z) ~ _nélog(r/r*)/log he—21r10/70 T(Tf/(?"oz))\/ - ( W, log (240)
WTE

mn(log O)Im[n T'(r?/15)]’

which, as 6 — 0, diverges when r,<r<r, but converges to zero for r>r,. By
similar analysis, based on equations (3.35) and (3.37) in MNMP, we see that the
field is resonant in the entire annulus 7. <r < r, and converges to zero outside
this annulus: see figure 5.

Thus, even constant energy sources become invisible to an observer outside
the cloaking region as 6 — 0. All their energy gets trapped and absorbed in the
lens. In this sense the lens behaves as a sort of ‘electromagnetic black hole’.
A different sort of localization of the energy was discovered by Cui et al. (2005).
They considered two opposing dipole sources on opposite sides of the lossless
Veselago lens. Each source is positioned a distance d/2 from the lens. They found
that the electromagnetic energy was confined to the layer of thickness 2d
between the sources (i.e. the cloaking region): outside this layer the field from the
nearest source cancels exactly the field from the image of the other source. In
another recent development Guenneau et al. (2005) found that electromagnetic
radiation would be trapped in the vicinity of two touching corners of negative
index material.

To obtain the corresponding cloaking results for a slab rather than a
coated cylinder we let r,, r, and 7 tend to infinity while keeping d= r, —r, and
dy = 1y — 1, fixed. Let us define z= z+ iy= z —r, so that the polarizable line is at
2= dy and so that the slab faces will be at z= 0 and z= —d. In this limit we have

ro=r,t+d, ry=r,+d/2, logh=2d/r, log(r./ry)=(d—dy)/rs

log(r,ry/15) = (d—2dy) /15, log(z/10) = (2= dy) /75,

2 2
Ty 2d—2d, Ty 2d —dy—z
AP b =L NP P A
e Ty T2 T

Y

(2.41)

Also we use the approximation, given in equation (4.3) of MNMP, that
T(1+ b/r) =1,Q(b), where

% vb —igb/(2d)
= J dv—2 =T : (2.42)
w149t 24 sin[wb/(2d)]

For a polarizable line source with these approximations (2.27) and (2.28) reduce
to

5 = 2d(E, + o k)0 Q(2d — dy — 2)/[Q(2d —2dp)log 0],

o (o2 (2.43)
o = 2d(E, — o kg)0'” Q(2d = dy —2)/[Q(2d —2dy)log 3,
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Figure 6. The resonant regions, represented by the shaded regions, for a line dipole source,
represented by the solid circle, outside a slab having permittivity e, close to —e, and with
interfaces represented by the solid lines. (a), (b) and (¢) are for ¢, = ¢,,, while (d), (e) and (f) are for
& # €y, where ¢, is the permittivity on the (front) side of the slab where the source is located,
while ¢, is the permittivity on the other side of the slab. (@) and (d) are for a line dipole source with
k* and k° fixed. (b) and (e) are for a polarizable line dipole source. (¢) and (f) are for a constant
energy source. The crosses denote ghost sources, i.e. image sources in the physical region, and the
cross hatched areas are where two resonant regions overlap.

while equation (2.25) implies
c(8) =n[(1/2d)log 6]6'“" D/ 1 Q(2d —2dy) when e, # ¢y, dy < d, (2.44)

and equation (2.35) reduces to

c(8) =—ie'?[(1/2d)log 66 D21 Q(2d —2dy) when &, = &y, dy < d/2. (2.45)

For a polarizable line source with ¢, =¢, and dy<d/2 (corresponding to the
symmetric lens studied by Pendry (2000)) the field is resonant in two layers each
of thickness 2dy, one centered at the front interface and the other centered at the
back interface. For a constant energy source with ¢, = ¢, and dy < d/2 the field is
resonant in two touching layers each of thickness d also centered at the
interfaces. For a polarizable line source with ¢, # ¢, and dj < d (corresponding to
the asymmetric lens studied by Ramakrishna et al. (2002)) the field is resonant in
the layer of thickness 2d, centered at the front interface (i.e. in the region
dy> > —d,). For a constant energy source with ¢, = ¢, and d, < d the field is
resonant in a layer of thickness 2d extending from a distance d in front of the lens
to the back interface of the lens (i.e. in the region d> x> —d). The locations of
the different resonant regions are summarized in figure 6.

3. A proof of cloaking for an arbitrary number of polarizable line dipoles

It is not clear if the concept of ‘effective polarizability’ has much use when two or
more polarizable lines are positioned in the cloaking region since each polarizable
line will also interact with the resonant regions generated by the other
polarizable lines and if the polarizable lines are not all on a plane containing
the coated cylinder axis then these interactions will oscillate as 0 — 0. However,
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we will see here that nevertheless the dipole moment of each polarizable line in
the cloaking region must go to zero as 6 — 0 and in such a way that no resonant
field extends outside the cloaking region. This is not too surprising. Based on the
results for a single dipole line we expect that a resonant field extending outside
the cloaking region would cost infinite energy, and the only way to avoid this is
for the dipole moment of each polarizable line in the cloaking region to go to zero
as 6 — 0.

Here we limit our attention to the cylindrical lens with the core having
(approximately) the same permittivity as the matrix. Also to simplify the
analysis we assume the core (but not the matrix) has some small loss. Specifically
we assume

em =1, & =—1+1ie, ¢ =1+Iie, (3.1)

with ¢, and €, having positive real parts and approaching zero in such a way that
the ratio yv=¢€./€, which could be complex, remains fixed and ¢ given by
equation (2.1) also remains fixed. In this limit (2.1) implies (¢, + €, )e; = 40e'? and
since ¢, and €. have positive real parts we deduce that ¢ is not equal to 7 or —.
Using the relation v =€./€, we see that

6 =2V )\ T+, e =2V6e"y/\/1+ 7. (3.2)

The potential in the core due to a single dipole at z,, with |z|> 7, is
Vo(r, 0, 2) = [fe (2, %) + (7, 20)]/2 + [ (2, ) = [ (Z, 7))/ (20), (3.3)

where z=re?, 2= re'®, and

Pz %) =) Ep( (3.4)
0=0
for p=e and p=o, and for all £#0
—kPB(6)(h/ 7)) 4e,
B (z) = BN 20) - g5) = (35)

ro(1 + 6el?h?) ’ (eg—e.)(1—eg)’
and ((6) depends on 6 through the dependence of & and ¢, on é but tends to 1 as
60— 0. Here k°* and k° are the amplitudes of the dipole components which have
even and odd symmetry about the line § = 6, respectively. These formulae agree
with the formulae given in equations (2.5) and (3.13) of MNMP when z = 7y is
real, and since the rotational invariance property V.(r, 0, z) = V.(r,0 =60y, 1) is
satisfied we deduce that the formula is correct when z is complex. (In the
formula for EY (zo) the requirement of rotational invariance necessitates the
factor of 1/ (rozo) rather than say a factor of 1/2 ™).

If there are m dipoles at 2, %, ..., 2, (Where z; # z; for all i # j) all outside the
coated cylinder then, by the superposition principle, the potential in the core is

V.=Y EBVS + B (3.6)
=0
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where for £#0

B = 250 SCURIEE
@ RBO) -0 . (3‘7)
By = (1 + 6690 ;(k] /r)(1/Z)",
in which
BV = (kS +i80)/2, KD = —(k +ik)/2. (3.8)

Let us suppose the dipoles positioned at z;, 2, ..., 2, with 1< g<m are in the
cloaking region, while the remainder of the dipoles are outside the cloaking
region, i.e.

|| <7y forallj<g, |z|>ry forallj>g, (3.9)

where we allow for the special case where some of the dipoles have |z;| = ry: as we
will see, these are also cloaked. We do not specify how the set of dipole moments
{ki, ks, ..., ky,} depends on 6 except for the following.

(i) We assume that each dipole outside the cloaking region has moments which
converge to fixed limits as 6 — 0

lim (5 (6), K2(9)) = (K k) forall 3> . (3.10)

The dipole moments k() and &j(6) inside or outside the cloaking region are
assumed to depend linearly on the field acting upon them, since non-
linearities would generate higher order frequency harmonics. Some of them
could be energy sinks, although at least one of them should be an energy
source.

(i) We assume that the energy absorbed per unit time per unit length of the
coated cylinder remains bounded as 6 — 0, as, e.g. must be the case if the
line sources only supply a finite amount of energy per unit time per unit
length. We let W, be the maximum amount of energy available per unit
time per unit length. It is supposed that the quasistatic limit is being taken
not by letting the frequency w tend to zero, but instead by fixing the
frequency w and reducing the spatial size of the system and using a
coordinate system which is appropriately rescaled.

We need to show that, because the energy absorption in the core remains
bounded, the dipole moments in the cloaking region go to zero as 6 — 0 and the
resonant field does not extend outside the cloaking region, r<r,. This is
certainly true when only one polarizable line is present but as cancellation effects
can occur (the energy absorption associated with two line dipoles can be less than
the absorption associated with either line dipole acting separately) a proof is
needed.

To do this, we bound £ and £k} for any given i< g using the fact that the
energy loss within the lens is bounded by W, If W,= W_(d) represents
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the energy dissipated in the core, then we have the inequality
27

W, = (w/2)e! JO rdr JO d0E(2)-E(2) > (w/2)e" L rdr

27

x| " a0s. B, (3.11)
0

in which ¢! =TIm(e.) = Re(e.) and E,(2) is the z component of the electric field in
the core given by

av. © . .
E,(2) = —a—‘;“ == ot (B 4 BP0, (3.12)
2=1

Substituting this expression for the electric field back in equation (3.11) and
using the orthogonality properties of Fourier modes we then have

2W, Jw> 2me! J (B + BPY(ED + B+ 3 e BV ED + EP BP)
0 =2

oo}

>aelr2 (B + B (B + BY) +wel Y er?(BV EY + BY YY)

=2
n+m—1 - - m—1 L _
> el e (B ED + EY B =l > b (U Uy + Vi),
L=n k=0

(3.13)
where the last identity is obtained using equation (3.7) with the definitions

b= (n4k)(r./r,)*" 218(8) /(1 + 0" TFel?) P,
UkE;Uj(ﬁ/%)k, UjE(Tz‘/Zj)nkj('l)/Tj, (3.14)
V= (/7)) 0= (n/2)" K /1,

Jj=1 )

in which £=2—n, n>2 remains to be chosen, and i< g. From equation (3.14) it
follows that U= Mwu and V = Mwv, where M is the Vandermonde matrix

1 1 1 1
72‘/21 7"2'/32 71‘/33 Ti/zm

M= (72‘/21)2 (7"1‘/22)2 (Ti/z?,)Q (Q/Zm)2 : (3.15)

(ro/ )" (ryf )™ (/)"0 ()™

From the well-known formula for the determinant of a Vandermonde matrix it
follows that M is non-singular. Therefore there exists a constant ¢;> 0 (which is
the reciprocal of the norm of M ™! and which only depends on 4, m and the z;)
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such that |U| > ¢;|u| and | V| > ¢;]v|, implying

(UP+ | VP> E(Juf + o) = G (wf + o) = SRV P+ (52 /r7. (3.16)

Next we need to select n and find a lower bound on b;, which is independent of £.
Let s=—logd/logh (so 6h°=1) and take n as the smallest integer greater than or
equal to s so n>s>n—1. Then since r,>r; we have

<T'*/T'i)2n2 (7"*/7"1-)25 _ 6—210g(r*/ri)/logh _ 6—1/25—210g(r#/ri)/1ogh. (317)
Also the following inequalities hold for m—1>%k>0
1=0h°<6h"<oh™** and oh"tF <on TR <oRTT™ =B (3.18)
So it follows that
I1+6n" " e?| < a= max |1+ te|, (3.19)
1<t<h"

and a is independent of 6. From the bounds (3.17) and (3.19) we deduce that
bk > S(r*/Ti)2k671/2672log(r#/ri)/loghlﬁ(é)|2/a2

_ (3.20)
_(logé/logh)671/267210g(7’#/n)/10gh’ﬁ(é)|2/a2‘
Combining inequalities gives
"18(5)[? Colos _
2oz DO gyt 4 V)
" (3 2 2 _
. 7\;850—257(“21)(’)_;;(_10%5)5 AN BV BT, (3:21)

in which the real positive prefactor has the property that

" 2.2
i ™ c|8(0)|7c; Re( 1¢/2,Y/ T+ (3.22)

6—0 6a2r210gh arzlogh

is positive and non-zero, where Re(w) denotes the real part of w. So there exists a
0p such that, for all positive § <, and all i< g,

me!|6(3)]°f
Va2 r2logh

By the triangle inequality we have

>p/2, where p= mmp7 > 0. (3.23)

B+ K212 = R+ | = B2 P > max{ |k, K, (3.24)

and so we conclude that

|| < 26"/ MN8N /W, [(wplog), (3.25)

which forces the dipole moment &} to go to zero as 6—0 (even when r;=ry)
because W, = W, (6) < W, ax-
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Now the superposition principle implies that the potential at any point zin the
matrix is

= Zm: k5 Vi(2) + B Vi (2), (3.26)

where Vj'(z) (or Vj(z)) is the potential in the matrix due to an isolated line
dipole at the point z; with &f =1, k7 =0 (respectively with & =0, &/ =1). Now
according to theorem 3.2 in MNMP (which is easily extended to the case treated
here where ¢. depends on 6) it follows that for |z| > max{r, %/},

lim VP(2) = V](2) = fi(2) +13(2)]/2 + ] (2) = J;(2))/ (2, (3.27)
where, because ¢. approaches ¢,,,

Fi(2) = [/ (z=2) +1/(=%))/2,  f;(2) = [1/(z—2) —1/(z=7%)]/(20). (3.28)

Also as shown above equation (3.27) in MNMP if 75 /r;> [2| > 1y, then V7p (2)

diverges as ¢ * Where a=log(r,rs/1;|2|)/log h. If 2 is out31de the cloaking region
(i.e. j>g) then 7y / r; will be less than Ty. SO usmg the well-known fact that

%m% e(0)f(0) = eofo, where ¢ = }SH% e(6), fo = %H%f( ); (329)
it follows that
Ef% K VP (2) = K Vi(z) forall|z|>ry, j>h, p=e, o. (3.30)

If 2 is inside the cloaking region (i.e. i< g) and |z|> 75 /r; then equations (3.27),
(3 29) and the fact that |k}'| tends to zero implies that &} Vp( ) will tend to zero. For
r#/r > |2| > ry we have that V}(z) scales as 6°* with o= log(r,1,/(13]2]))/log h
while from equation (3.25) &} scales at worst as 6°/(—log 6) with b=1log(ry/r;)/
log h. So their product Vp( ) will scale at worst as 6" %/(—logd) where
b—a=1log(|2|/ry)/log h. This goes to zero as 6 > 0 when |z| > ry. By taking the
limit 6 — 0 of both sides of equation (3.26) we conclude that

] Vi Vo for all |2| > 31
51_I>%V ];1 V](z) or all |z] > 7y, (3.31)

which proves that the coated cylinder and all the line dipoles inside the cloaking
region are invisible outside the cloaking region in this limit.

More can be said if there is only one dipole line outside the cloaking region, i.e.
g=m—1, and the dipoles inside the cloaking region are always quasistatic
energy sinks, in the sense that for all j < g the inequality

Im[k B2V — K EIV)] <0, (3.32)

is satisfied no matter what is the value of the field (Eg(j ), Eg @ ) acting on the line dipole
at z;. For example, if the line dipole at ; responds linearly to the local field with

e 0(5)
( g ) o for all j < g (3.33)
0 - ; - b ’
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then equation (3.32) will be satisfied provided a; + ajT has a positive semidefinite
imaginary part.

From equation (4.10) of MNMP, generalized to allow for more than one line
dipole, it follows that

W, < (w/2)J dz dy ¢"E(z,y)  E(z,y) = wﬂ'z Im[E?Eg(j) - I%;Eg(j)]
_ - _ - 3.34
< wrlm[k, EX™ — &, ES™] < wm| kS, EX™ — k0, EY™)| (8:34)
< o[ || ES™] + [k 2.
Also equation (3.26) implies
Z KEY (z) + KEY (2,),  E)™ Z KEY (z) + KBSV (2,),
(3.35)
where
, VP (2) . VP (2)
ey =0 By =2\ 3.36
06 =L, B =t (3.36)
So we have
g
Z K51 B ()| + 111 B2 (2
o (3.37)
| <Y IKIEY (z)| + K11 BV (2)]-
=1
Now from equation (3.25) when 6 < d;
|KP| < 28v0elrs/madlog /Yy [(0)plog 6), where 1y, = max r;, (3.38)
i<y

and this with the inequalities (3.34) and (3.37) implies

W, < o oslrs/mmed/lo8 by /W Jlog 6, (3.39)

where
g . B

v =2m/(1/p) Y 1K ESY (z) | + 1Y) (z2)]) + [Kul 1 B ()| + [V (220)]).-
j=1

(3.40)
As 6 — 0 this tends to

: ~e(j ~o(J ~e(J ~0(J
Vo =21/ (1/0) S KBS (z)| + 1B () + RO E” ()] + 1B ()
j=1
(3.41)
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where
Vi) 0 Vi)
or Y oy

So there exists a positive 6; <J, such that ¢ <2y, for all §<d; and from
equation (3.39) we deduce that

Ep(j) (Zm) —

(2m) = (3.42)

WC S _4ww362 IOg(T#/nnax)/lOg(h) /log 6’ (3‘43)

which goes to zero as 6 — 0. Similarly the energy absorption in the shell goes to
zero as 6 — 0. Combining this with equation (3.25) gives an improved bound on
the ith dipole moment in the cloaking region:

kP < —4y, (1/p>5log[ri/(rmmnz)}/log " Nlog 6. (3.44)

For 3, /1;> | 2| > Ty we have tbhat VP (2)scalesas o™ wit2h a=log(r%/(r;|z]))/log h
while £ scales at worst as ¢"/(—log 9) Xith b=1log[ry /(7 max)]/10g h. So their
product &7 VP (2) will scale at worst as 6" */(—log 6) where b— a=1log(|2|/ )/
log h. This goes to zero as 6 — 0 when |z| > 7, So all the dipoles in the cloaking
region will have vanishingly small contribution to the potential V(z) outside the
radius 7;,,. There will be aresonant field in the region between 7,,,,, and r if and only
if rf# /T > Tmax and even if this resonant field is present, its asymptotic form will not
be influenced by the dipoles in the cloaking region.

By the superposition principle this last result extends to the case where an
arbitrary number of line dipoles lie outside the cloaking region provided their
moments (&7, k7) for j> g do not depend on 6 and provided the line dipoles inside
the cloaking region have a linear response of the form (3.33) with the imaginary
part of a; + a;r being positive semidefinite for all j < g.

4. Cloaking properties of the Veselago slab lens

Let us now move away from quasistatics and investigate the cloaking properties
of the Veselago slab lens at fixed but arbitrary frequency w. We assume the lens
has relative permittivity e =—1+ie and relative permeability u,=—1-+iv,
where € and v are now assumed to be real, and that the surrounding medium has
relative permittivity and relative permeability both equal to 1.

We assume that the source is a line electrical dipole positioned along the
Z-axis, (z,y) = (0,0) with the slab faces at the planes = dy and z= dy+ d, with
d being the slab thickness and d; being the distance from the source to the lens.
For TM polarization all the electromagnetic field components are easily
calculated once one has determined the only non-zero component of the
magnetic field Hy(z, y), where we have used a capital Z for the zcoordinate to
avoid confusion with z= z+ iy. By the superposition principle Hy(z, y) is given
by the expression

o]

Hy(z,y) = J dk,a(k,)7(z, y; k), (4.1)

—00
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where for a line dipole source

a(k,) = —w[k(k,/k,) +1k°]/2, with k, = /w?/ —k2, (4.2)

in which %° is the (possibly complex) strength of the dipole component which has
an electric field component E,(z,y) with even symmetry about the z-axis (i.e.
with E,(z,—y)= E,(z,y) and Hy(z,—y)=—H,(z,y)) and k° is the (possibly
complex) strength of the dipole component which has E,(z, y) with odd symmetry
about the z-axis (i.e. with E,(z,—y) = —E,(x,y) and H;(z,—y) = Hz(z,y)): these
have been normalized so that they are consistent with the quasistatic definitions
of k° and k° (which are not to be confused with wavevectors such as k, and &,
which have subscripts). The transfer function 7(z,y; k,) represents the solution
for H, when a plane wave with an incident field H}¢= el k2t h =0l comes
towards the lens from the left. Let 7,,(z, y; ), 74(z, y; k, ) and 7.(z,y; k,) denote
the expressions for 7(z, y; k,) in front (to the left) of the slab lens, in the slab
lens, and behind (to the right) of the slab lens, respectively. In each region
7(x, y; k,) is a linear combination of two plane waves except behind the slab lens,
where there is only an outgoing plane wave. The coefficients can be determined
from the requirement of continuity of the tangential components of the magnetic
and electric fields across each interface, i.e. from the continuity of 7(z, y; k,) and
(1/e)0o7(z, y; k,)/0x. In this way exphclt expressions for these transfer functions
can be derived (e.g. Kong (2002) and Podolskiy & Narimanov (2005)) but here
we will only need their asymptotic forms.
For fixed k, we have

limOT(x, y;i k) = (z, y; k,) = ol (krmthyy) for z < d,
€,v—> h

= 2T for ¢ <z < d + d,
= ol 20Tkl for o> g + dy. (4.3)

Let us choose a very large positive number k, which is to remain fixed as €,» — 0.
Then the integral (4.1) can be rewritten as

HZ(% Z/) = [A(l‘, y) + B(xv y) + C(SL‘, y)]v (4'4)

where
A.Z',y ‘[k dkak) (x,y;ky),

B(z,y) = f_zc dkya(k,)7(z, y; k), (4.5)
C(z,y) = [ dk,a(k,)7(z, y; k,),
and let us define

k,
H)(z,y) = hmoB(x y) = J dkya(k‘y)TO(aj, y; k). (4.6)
Py P A

It follows from equation (4.3) that this field has the mirroring properties
Hy(z,y) = Hy(2d, —,y) for 0 < z < 2d,, }

(4.7)
Hg(z, y) = Hg(ZdO +2d—ux,y) for dy<z<dy+2d,
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which combine to give the shifting property
Hg(x, y) = Hg(m—Zd, y) for2d<z<dy+ 2d, (4.8)

that is responsible for the superlensing.

In the region 0 < z < dj the field Hy(z, y) is approximately that due to the dipole
line with the lens absent, except near the plane z=0. Incidentally, the analytic
continuation of this field to the region <0 will be an enormously large field with
spatial oscillations on the length scale of 1/k.. In the region dy < z < 2d, the field
H)(z,y) is approximately that due to a solitary ghost line dipole at (z, y) = (2d,,0),
except near the plane x= 2d,. Similarly, in the region 2d < z < dy + 2d the field
H)(z,y) is approximately that due to a solitary ghost line dipole at (z, y) = (2d, 0),
except near the plane z=2d. In the region 2dy < 7 < 2d the field H}(z,y) will be
enormously large (but bounded for fixed k.) with spatial oscillations on the length
scale of 1/k,. In this region and in the region 2d, — d < = < d the field Hy(z, y) will be
dwarfed by the field A(z, y) + C(z, y) for sufficiently small 6.

For large |k,| and small loss (i.e. small € and ») very good approximations to
the transfer functions have been derived by Podolskiy & Narimanov (2005) and
Podolskiy et al. (2005) and are given by

K(2d—2dy+1) \

) i 4 1€
(e i hy) = €Y o

ek(x—?clo) 4 igex@d—x)

. ~ ik
Ts(l‘, Y, ku) -~ (1 + lE)(l ¥ gQGQKd) e J) (49)

eK(2 d—z)

—e y
1+ 52€2Kd

in which k= {/k? —w?/¢* and ¢ is the loss function

5—1 . €e+v
2 2(k2c%w?*—1)]

where the first expression has been kindly supplied to us by Viktor Podolskiy
(2005, personal communication). For very large |k,| and very small loss, we have
that £ =€/2 and k = |k,| so the approximate expressions for the transfer functions
reduce to

7(z,y: k) =

(4.10)

: k,l(2d-2dy+z)
Tul@, ys k) = e hlatiky +1(e/2)e\ |(2d-2d, >elkyy’
! 1+ (/2)%e2hld
&y |(z—2dy) 4 5 |&,|(2d—)
el +1i(e/2)e!™ "
k)= 1Ry Y
(7, 1 k) T+ (/20 e, (4.11)
Ik, (2d—2)
e o
k)= ik,y
el v ) = e
and in this limit
a(ky) =—owl[k*(k,/|k,|) +1k°]/2. (4.12)
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The important observation is that these asymptotic expressions (with the
exception of the scale factor of w in equation (4.12)) are independent of the
frequency w. Since whether or not the integrals A(z,y) and C(z,y) converge or
diverge as ¢ and v tend to zero is determined by the asymptotic form of the
transfer functions we conclude that the resonant regions at any frequency must
be located in the same areas as in the quasistatic limit, i.e. in two layers of equal
thickness, one centered at the front interface of the lens and the other centered at
the back interface. Furthermore the asymptotic expressions for the fields in the
resonant regions should be the same expressions as those in the quasistatic limit,
given by equations (4.6)—(4.9) of MNMP, and as a result the effective
polarizability should be the same as in the quasistatic case.

Let us now directly see this. We need to estimate integrals of the form

i ehyd —k. 2l
Ib)=| dby———5—7 = dk, , 4.13
(® Jk Y1+ (e/2)%e* ™ J_w Y1+ (e/2)%e 24k, (4.13)

for complex values of b= b'+ib” in the limit as e — 0. Clearly if ¥’ is negative we
have the estimate

11(b)| < L dk, || = L kel = —e"% (4.14)

and since k, is large the integral is negligibly small except when b’ is very small.
When & >0 let the transition point k, be defined by (e/2)e™ =1, i.e.

—(1/d)log(e/2), and let us change the variable of integration from £, to
v=k, —k;. Then the integral becomes

o vb 0 vb
€ €
10 =t dvpm=et | @ e, a)

where @y(b) is obtained by setting ¢ =0 in the integral (2.42) giving
Qo(b) =

2d sin[mb/(2d)]

(4.16)

In making the approximation (4.15) we have assumed that € is so incredibly small
that kt —(1/d)log(€/2) > k.. From equation (4.15) we see that (e/2)I(b) =
(¢/2)/2Qy(b) and a quantity like this is negligible in the limit e — 0 when
b <d.

Let Am($7 y)7 As(x7 y)7 Ac(xa y) and Bm(zv y)v Bs(xv y)a Bc(x7 y) denote the
values of A(z,y) and B(z, y) in front of the lens, in the slab, and behind the lens,
respectively. Using the approximations (4.11) and (4.12) we have

A (z,y) =—|w(k° +1k°)/2]i(e/2)1(2d —2dy + z), )
) = [w(k® —ik°)/2]i(e/2)[(2d —2d, + Z),

) =k + i) /21 <z—2do> +i(e/2)I(2d—3),
) = (K —ik) /2 [1(:—2dp) +i(e/2) 12— 2)],

z,y) =—[w(k® +1k°)/2]1(2d —z),

z,y) = [w(k® —1k°)/2]1(2d — z).

m

(4.17)
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From these expressions we see that for fixed k° and k° the field Hy(z,y) is
resonant inside two possibly overlapping layers each of thickness 2(d —d,) one
centered at the front interface of the slab and the other centered at the back
interface of the slab. Podolskiy et al. (2005) had already found that the fields are
very large in front of the lens outside the quasistatic regime, and we now see that
they become infinitely large as € — 0.

Substituting the approximation (4.15) into (4.17) yields expressions for Hy(z, y)
in the resonant regions. In each resonant region

Hy(z,y) = G(z,y) = sw{[g°(2) = ¢"(2)]/2 + [¢°(2) + °(2)]/ (2D)}, (4.18)

where G(z,y) is a piecewise harmonic function of z and y, and the prefactor s,
which is 1 inside the lens and —1 outside the lens, is introduced to make the
comparison with the quasistatic results easier. One finds that for p=-e,0 in the
resonant region 2dy —d < £ < d; in front of the slab

P (2) = gh(2) =—igh(¢/2) 0™ Qy(2d —2d, + 2), (4.19)

where g=1 for p=e and ¢=—1 for p=o, while in the resonant region d-+ d; <
2z < 2d behind the slab

P(2) = gb(2) = K (e/2) V1 Qy(2d —2). (4.20)
Within the slab, for z < min{2d,, d}, one has the resonant potential
9°(2) = ghy(2) =—ik(e/2) 1 Qy(2d —2), (4.21)

which is associated with the front interface and for z> max{d, 2dy} one has the
resonant potential

P (2) = gh = ak(¢/2) 201 Qy(2 —2dy), (4.22)

which is associated with the back interface, and when d, < d/2 for 2dy < z < d one
has the resonant potential ¢°(z)= gb (2)+ gh,(2) where the resonant regions
overlap. Here the notations ‘in’ and ‘out’ are introduced to be consistent with the
notations in equations (4.8) and (4.9) of MNMP.

The above expressions for ¢h (2), ¢ (2), ghy(2), and gb (2) agree precisely with
the asymptotic expressions for fP(z), fP(2) [P (2), and fP(z), respectively, in
equations (4.6)—(4.9) of MNMP with the identification z= dy — z corresponding
to the different coordinate system used in that paper, with ¢ =0 corresponding to
the trajectory choice &,=1+ie chosen here, and with the signs of k° and £°
changed due to the 180° rotation associated with the different coordinate system
(a dipole rotated by 180° has opposite sign).

Also since €= s the formula (4.18) is consistent with the formula (2.7) in
MNMP for the magnetic field H; once one replaces w with —w because the time
dependence in that paper has the factor e’ rather than e !, It is not surprising
that Hj; becomes asymptotically harmonic in each resonant region as ¢ — 0 since
in this limit in the equation (V?+ w?ue)H,=0 satisfied by H, the spatial
derivatives dominate because of the huge gradients in the field Hj.

From Maxwell’s equation V X H = —weFE we see that in each resonant region

where
V(z) =[g°(2) + 4°(2)]/2 + [9°(2) — ¢°(2)] / (24). (4.24)
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In particular, in the resonant region in front of the lens, we have

El(z,y) = —1g5l(2) + gia(2)]/2 — [g51(2) — g20(2)] /(20), } (4.25)
B} (x,y) = —ilg5(2) — 65(2)]/2— [95(2) + g%(2)]/2. '
where
() = dgh(2)/dz = igh”[(1/d)log(e/2)](e/2)*W™ " Qy(2d —2dy + 2)

—igh?(e/2) 4Ol (2d —2dy + 2)

~igk?[(1/d)log(e/2)](e/2) P21 Qy(2d —2d, + 2),
(4.26)

if which we have assumed [log(e/2)| >> 1. As can be seen from these equations, the
fields E;(z,y) and Er(z y) have an approximately exponential decay away from
front of the slab face i.e. they decay as e”/! with a decay length ¢t= d/[log(e/2)|
which depends on € and d but which is independent of the frequency w and which is
roughly of the order of dif € is not too small. This is in contrast to most evanescent
fields which typically have a decay length which is of the order of the wavelength.

The Z-axis, which is where the dipole source is located, will be in the resonant
region when dy<d/2 and the resonant field (Ej, Er) (E:(0,0), E,(0,0)) =
(—g5,.(0),—go1(0)) acting on it will be given by equation (2. 6) with

c(0) = c(€ /4) = =i[(1/ d)log(e/2))(€/2)* ™" Qy (2d —2y), (4.27)

which is in agreement with equation (2.45) when one sets 6 =€>/4 and ¢=0 in
accordance with equation (2.2). Now suppose that the source being considered is an
electrically polarizable line source satisfying equation (2.7) in which (E?, ES ) is the
total field acting on the line source. Also suppose that there are other fixed sources,
possibly on both sides of the slab lens, that lie outside the cloaking region, i.e. which
are more than a distance d/2 away from the slab. We assume these fixed sources are
not perturbed if we remove the polarizable line and we let (E,, E,) denote the field at
the Z-axis due to these sources and the slab lens when the polarizable line source is
absent. Then it is easy to check that equations (2.7)—(2.26) remain valid, implying
that the polarizable line is cloaked at any frequency, not just in the quasistatic limit,
and for very small loss the effective polarizability will be

id(e/2)\d2b)/
~—T/e(e/4) = 1.
[log(€/2)|Qn(2d —2dy)
which will be purely imaginary, with a small positive imaginary part, reflecting the
loss in the lens due to the localized resonance.

When, for simplicity, the polarizability is proportional to the identity tensor
a= al, then equations (2.26), (4.19) and (4.27) imply

—[E, + o 'k§]d(e/2) " Qy(2d —2d, + 2)

(4.28)

Co ]
gm(Z) =~ 10g<e/2) Qo(Qd 2d0) ’
! ! (4.29)
s (3 = B T RIAE/2) Q20 =240+ 2)
Im - ]0g(e/2) Qo(Zd 2d0) 7
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which are resonant in the layer between the source and the slab. Similarly by
examining g5, (2), gh, and ¢b, we see that just as in the quasistatic case (see figure 6)
the resonance is confined to the two strips 0 < < 2d, and d < x < d + 2d; each of
thickness 2d, and each with an interface of the slab as its midplane. The energy
estimates obtained in §4 of MNMP remain valid: as e — 0 the total electrical energy
stored in the slab will scale as

(182 + (K P 2 log ¢ ~ /D2 log el /|e(¢/4) P ~ €2/ /log €], (4.30)

which goes to infinity as e — 0. Consequently, if the sources are started at some
definite time it will take an increasingly long time (but one which is apparently
relatively independent of the frequency w) for the energy in the resonant field to
build up to its equilibrium value and for the polarizable line to become cloaked. For
fixed but small € the transient time will be smallest when d,/ d is small since then the
total electrical energy stored will be dramatically less. Also the cloaking effects will
be strongest when d;,/d is small since then c(€?/4) is largest. Therefore, for cloaking
purposes, it is highly advantageous for the polarizable line to be close to the lens. The
electrical absorption in the lens will scale like € times the above expression, i.e. as
el4724)/4 /1o €| which goes to zero as € — 0, and fastest when d/d is small. By a
similar analysis, based on equations (4.18), (4.21), and (4.22), the total magnetic
field energy H, within the lens scales like

W (KT + (K P1EW D2/ llog ¢ ~ e /D7 /(Jlog €| c(8)) ~ e P/ /|log ¢f?,
(4.31)

which for sufficiently small e will be much smaller than the electrical energy, but will
still go to infinity as e — 0.

5. Cloaking in three dimensions

Since the asymptotic expressions (4.11) for the transfer functions (and the
analogous asymptotic expressions for the transfer functions of transverse electric
(TE) fields) are independent of the frequency w the three-dimensional cloaking
properties and the effective polarizability of a polarizable point dipole in front of
the Veselago lens at any fixed frequency should be the same as in the quasistatic
limit. Therefore, to simplify the analysis, let us restrict our attention to the
quasistatic case, which anyway is more easily experimentally tested since the
magnetic permeability can be positive and real everywhere.

We consider the cloaking of a polarizable point dipole in front of a slab of
relative permittivity e,. The region in front of the slab has relative permittivity
&, and the region behind the slab has relative permittivity e.. We assume that ¢,
and ¢, remain fixed and that e, approaches —¢,, along a trajectory in the upper
half of the complex plane in such a way that 6 — 0 but ¢ remains fixed, where ¢
and ¢ are given by equation (2.4). It proves convenient to use z;, 7, and 23 as our
coordinates, rather than z, y and Z, with the polarizable dipole being at = 0 and
the slab faces being located at x; = d, and at z; = dy + d.
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By differentiating with respect to z;, 2», and 23 the plane wave expansion for
the potential associated with a suitably normalized point charge,

1 1 (® (*® e—Kzl+i(k2z2+k3z3)
LN J J dhydbs e for >0, where k = /Tty + ks,
r 00 K

21 )
(5.1)

one obtains the plane wave expansion for a dipole

—a-V[1/(4nr)] = (a-z)/(4nr’) = J

—00

e}

j dkyd ks a(ky, ky)e @ Tilkethan) (5 9)

in which

a=(a,a,0a3), a(ky,ks) = [a—iay(ky/k) —iaz(ks/x)]/(87°), (5.3)

and a;, ay and ag are (apart from a constant factor) the possibly complex
strengths of the dipole components in the z;, 25, and a3 directions.

By the superposition principle the potential V() in the slab geometry is given
by the expression

Viw) = [ [ dhdbaths ke b k), (54)

where the transfer function 7(x; ky, k3) represents the solution for Vwith an incident
field V"¢ = e*atilhnthss) Lot 7 (@ ky, ky), 7o(@; ky, ky) and 7.(a; ky, k3) denote the
expressions for 7(x; ky, k3) in front (to the left) of the slab lens, in the slab lens, and
behind (to the right) of the slab lens, respectively. These have the form

Tm(w; ky, kj) — e—Kz1+i(k2112+k3x3) + ﬁm(K)erl+i(k2m2+k3mg),
Ts(w; ky, kg) = OIS(K)eme‘ +i(kyzy +h313) + ﬁs(K)erl +i(]fz-T/z+k3-Tf3)7 (5.5)
T (5 ky, kg) = a (k)™M ik, +hyz)

The requirements of continuity of the potential 7 and normal component of the
associated displacement field —e d7/0z at the interfaces z=d, and z= d+ d,
determine the coefficients

I (K) = (GQ(didO)K/nsc) _6ei¢nsce72dol< o (K) _ 2€n162dK
o 1 + delPe2d T N (em — &) (1 + OeiPe2dx)’
9 —2dyk 4 2dk
B.l0) = o (k) =

(em —ss)(l + 6ei¢62d'<) ’ (é‘s —SC)(é‘m _Ss)(l + 5ei¢82d;<) ’
(5.6)

where 1, = (e, —e¢.)/(es+ &.). Introducing the angle ¢ such that k, =« cos @,
ks = k sin @, then the integral (5.4) becomes

V(z) = J

0

2w

oo}

d(pa(qo) J dx Ka(K)eK(—zl +izycos @+izgsin @) + Kﬁ(K)eK(zl +izycos @+izzsin (p)7
0

(5.7)
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in which «a(k) equals 1, o (k) and «,(k), in front of the lens, in the lens, and behind
the lens, respectively, and similarly B(k) equals g, (k), Bs(k) and 0, in these
respective regions, and where
a(@) = (a; —iaycos ¢ —iagsin @)/ (877). (5.8)
Let us define
o kb o Kb
Ke dJ(b) Kkbe
Jbo)=| dk————, J(b=—2L=| dk————. 5.9

(%) Jo . 1 + delte2dr’ (b) db Jo . 1 + deie2dx (5.9)

Then we have

V() =(a-x)/4mr* + Endqoa(fp)[JQd— 2dy + 1z +izycos @ +izzsing) /0.
— 6. J(—2dy + 2, +izyco89 +izzsing)],
Vi(x) = szd(pa(q)) [J(2d— z; +ixycos @ +izgsing) /ng.
+ J(—2dy + 2 +izycos @ +izzsing)][2e,,/ (em — &),
Ve(x)= Ewdfpa(q)) J(2d— 1 +izycos @ +izssing)(desen)/[(es —€c) (em —&5)]-
(5.)10)
The electric field in front of the lens will be
E(z)=—-VV,, = E™(z)+ E'(z), (5.11)
where E is the field due to the dipole alone,
E%™ = V(g z/(4nr*)] = [3z(a ) /r* — a]/ (471"), (5.12)

and E"(z) is the response field (which in the limit as 6 — 0 can become the resonant
field) given by

E'(xz) = (F{,FE;,E3)
2w
= J dga(e)(1,icose,ising)[—J (2d—2dy + 7 + izmycos @ +izzsing) /9y,
0
+6e'9 0, J (—2dy + x; +izpc08 + izzsing)). (5.13)

In particular at the origin =0, which is where the dipole source is located, the
integral is easily calculated and we have

10 0
E"(0)=c(6)La with L=[01/2 0 |, (5.14)
00 1/2
where
c(0) =—J'(2d—2dy)/ (47ny.) + 6€Pn.. T (—2dy) / (47). (5.15)

So far no approximation has been made.

Proc. R. Soc. A (2006)



Cloaking effects associated with resonance 3055

Let us now examine J(b) for complex values of b= 41" in the limit as
60— 0. If b’ is negative then we have the estimate

|J(b)| SJ de k[ /¢y = 1/(cob"?), where ¢y = m>i(1)1|1 + ce?|, (5.16)
0 |

and ¢y is non-zero because ¢ is never equal to m or —w. So in this case J(b)
remains bounded as 6 — 0, and

o Kb o
. _ . ke _ kb _ 1 /52
%1_{% J(b) = L dKléE% T4 50920 Jo dk ke 1/0°. (5.17)

It follows from equation (5.10) that when e, #¢, and a is fixed the potential
V() is not resonant outside the layer 2d > z; > 2(d, — d).

When ¥ >0 let the transition point k, be defined by dée** =1, i.e. by
k;=—(1/2d)log 6, and let us change the variable of integration from « to
v= Kk —k;. Then the integral becomes

Y (U+ kt)e(v-&-kf)b ~J~oo q (’U+ kt)e(v+kt)b (5‘18)

ﬂw=J dv

0 -~ v g
—k 1+ e —o0 1+ 7

and this latter integral can be expressed in terms of the functions Q(b), given by
equation (2.42), and its derivative Q'(b)=dQ(b)/db:

00 vk e(U+kt)b d ® e(v-‘rkf)b d
|ttt | ()

~ e = dy——mM = —
—o0 v 1+62dv db —o0 v1+62dv db

= ke Q)+ Q'(0) (5:19)
=~—{(1/2d)log 66 >4 Q(b),

where we have assumed @(b) # 0 and used the fact that &, is large for extremely
small §. Combining formulae gives

J(b) =—{(1/2d)log 8]5~*'Q(b),
J'(b) = dJ(b)/db=[(1/2d)log 66722 Q(b) — [(1/2d)log 6]6 />4 Q' (b) p (5.20)

=(log 6)*67"*1Q(b)/(4d%),

and so for dy < d when ¢ is very small
o(6) ==J'(2d —2dy) / (47n,.) =—(log 6)*8' ™" Q(2d —2d,) /(167 d*ny.). (5.21)
If ¢, #¢&, and 6 — 0 then n,, — 1/n and the above expression gives
(8) =—n(log 6)26 V1 Q(2d —2dy) /(167 d?), (5.22)
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which implies the dipole becomes cloaked (]c(0)| is large) for all dy < d. In the
case when &. = ¢, then 7, =ie%/? / V/6 for small ¢ and we have

c(6) =ie'?(log 6)%6@ /2 Q(2d — 2d,) / (167 d?), (5.23)

which implies the dipole becomes cloaked for all dy < d/2.

To justify these cloaking claims suppose the dipole at =0 is a polarizable
‘molecule’ in the cloaking region. Let E(x) be the field without the polarizable
dipole present due to the following.

(i) Fields generated by fixed quasistatic sources lying outside the slab (on
either side of it) and which are outside the cloaking layer.
(ii) Fields generated by the slab due to its interaction with these fixed sources.

The field E° acting on the polarizable molecule has two components:
E’ = E(0) + E"(0) = E(0) + ¢(6)La, (5.24)

where E"(0) is the field due to the interaction of the polarizable molecule with
the slab. If @ denotes the polarizability tensor of the molecule (which need not be
proportional to I) and we allow for the fact that the polarizable line could have a
fixed dipole source term a, then we have

a=aE +ay=a.E0) +a, (5.25)

where
a, =[a—c(0)L]", a,=[I—c()al] ay, (5.26)

are the ‘effective polarizability tensor’ and ‘effective source term’. Notice that the
‘effective polarizability tensor’ is anisotropic when a= «l.

It is interesting to examine what happens if the polarizable ‘molecule’ is
behind the slab. When ¢. = ¢,, symmetry considerations imply that the molecule
will be cloaked if it is within a distance d/2 from the slab. When ¢, # ¢, we will
see that a molecule behind the slab will never be cloaked. To establish the latter
it suffices to consider the situation where the molecule is in front of the lens and
¢, tends to —e. Then equation (2.1) implies & =(—1—26¢'’/n)e, and
Nee =ne? /6. Tt follows from equation (5.15) that

¢(0) = [0’ J'(2d —2dy) /n + nJ' (—2dp)] / (4). (5.27)

Now as 6 = 0 equation (5.16) implies J'(—2d,) remains bounded, while equation
(5.20) implies 6J'(2d —2d,) scales as (log 6)?6%/¢. Therefore ¢(6) remains
bounded and no cloaking occurs.

6. Not everything is cloaked

Here we show that a layer of permittivity e, # ¢, is not cloaked when it is
inserted in the cloaking region. Let us consider the quasistatic transfer
function 7(x; ky, k3) associated with a multilayered system with interfaces at
T = 81, 82, 83, 84, Where 0 < s; < 5 < 53 <4 and in the region between s; and s;;;
the permittivity is e;,1, while for 7; < s, it is &; and for x> s, it is &;. In the region
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occupied by the material with permittivity e;, for j=1,2,...,5 the transfer
function takes the form

T]-((B; ij kS) — ajeflcxl+i(k2$2+k3;v3) + 6jemcl+i(k2,rg+ls:3m3)7 (61)

where a; =1 and 85 = 0. The requirements of continuity of the potential 7 and
normal component of the associated displacement field — 07/0z at the interface
T = s; imply

a; a; 1 1+, (1—g,)e" s
J — M] j+1 ’ MJ = J J : Q] = Ll
B; Bji+1 2\ —g;)e " 1+ &

(6.2)

Thus we have

1 U5 mp My
=M y Where M = = M1M2M3M4, (63)
b1 0 ms My

which implies a5 =1/m; and 8; = m3/m,;. Now let us take
g =¢e3=¢=¢, =1, g =¢=—1+i, s35=4dy, s,=d+dy, (64)

where € is very small, so that the multilayered system consists of a layer of
permittivity e, and thickness s, —s; in front of a superlens and not touching it.

Then we have
e—?dK 0
hm M = Ml MQ )
e—0 0 2dk

e
and consequently a5 and §; still depend on &, even if the layer of permittivity &y
lies entirely inside the cloaking region: thus the presence of the layer can be
detected from outside the cloaking region.

On the basis of this example one might think that cloaking does not extend to
bodies of arbitrary shape. However, the example is very special in that the
potential in the region s, < x; < sy when analytically extended into the region
71 < s has no singularities there, and in particular no singularities in the cloaking
region. By contrast, any object of finite extent lying entirely within the cloaking
region of the slab lens will have singularities in the analytic continuation of the
potential outside the object to the region within the object. In order for these
singularities not to create resonant regions with infinite energy in the limit e — 0
it seems plausible that their effects should diminish as e — 0. Therefore it may be
the case that any object of finite extent lying entirely within the cloaking region
of the slab lens will be cloaked in the limit € — 0. It seems much more speculative
to suggest that an object lying half way in the cloaking region would be half
cloaked. However, if this were true it could provide an interesting way to image
the interior of an object: when one looked through the slab lens at the object one
would only see only the back half of it!

To experimentally detect cloaking it may be necessary to use lasers to provide
coherent radiation. If ordinary electromagnetic radiation were used then by the
time the resonant field responsible for the cloaking reached an equilibrium value
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the radiation acting on the polarizable ‘molecule’ could be out of coherence with
the resonant field acting on it. This might not be the case if the ‘molecule’ is
sufficiently close to the boundary since then the resonant field reaches its
equilibrium value relatively quickly. Also we have assumed that the ‘molecule’ is
a stationary object, and therefore it seems possible that thermal effects could
destroy cloaking. To minimize these effects it may be necessary to reduce the
temperature as much as possible. Moreover, it seems unlikely that cloaking could
be achieved over a broad range of frequencies since if ¢, =—1 at one frequency
and we assume the loss terms are extremely small, the positivity of d(we,)/dw
(which enters the Brillouin formula for the energy: see §80 of Landau & Lifshitz
(1960)) implies that de,/dw > 1/w, so there is necessarily a significant change of
the permittivity e, with frequency.

It should also be cautioned that we have not investigated the effects of
stability. If the time harmonic solution assumed here is unstable it seems unlikely
that cloaking could be experimentally observed.
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