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Regions of anomalous localized resonance, such as occurring near superlenses, are
shown to lead to cloaking effects. This occurs when the resonant field generated by a
polarizable line or point dipole acts back on the polarizable line or point dipole and
effectively cancels the field acting on it from outside sources. Cloaking is proved in the
quasistatic limit for finite collections of polarizable line dipoles that all lie within a
specific distance from a coated cylinder having a shell permittivity 3szK3mzK3c where
3m is the permittivity of the surrounding matrix, and 3c is the core permittivity.
Cloaking is also shown to extend to the Veselago superlens outside the quasistatic
regime: a polarizable line dipole located less than a distance d/2 from the lens, where d
is the thickness of the lens, will be cloaked due to the presence of a resonant field in
front of the lens. Also a polarizable point dipole near a slab lens will be cloaked in the
quasistatic limit.
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1. Introduction

Nicorovici et al. (1994) found that a coated cylinder, now called a cylindrical
superlens, with a core of dielectric constant 3cZ1 and radius rc and a shell with
dielectric constant 3sZK1C i300s and outer radius rs would in the limit 300s /0 be
invisible to any applied quasistatic transverse magnetic (TM) field. Here we show
that not only is the lens invisible in this limit, but so too are cylindrical objects,
or at least any finite collection of polarizable line dipoles, that lie within a radius
r#h

ffiffiffiffiffiffiffiffiffiffiffi
r3s =rc

p
of the cylindrical superlens.

In that paper some other remarkable properties were found to hold in the limit
300s /0. First a cylinder of radius rc and permittivity 3cs1 placed inside the
cylindrical shell would to an outside observer appear magnified by a factor of
hZr2s =r

2
c and respond like a solid cylinder of permittivity 3c of radius r�ZrchZ

r2s =rc to any quasistatic TM applied fields that do not have sources within the
radius r�. Second, again when 3cs1, a dipole line source positioned outside the
coated cylinder at a radius r0 less than rcritZr3s =r

2
c Zr2�=rs would have an image
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G. W. Milton and N.-A. P. Nicorovici3028
dipole line source (ghost source) lying outside the cylinder at the radius
~r0Zr2�=r0Ors. Specifically, because there cannot be singularities in the field
outside the cylinder, apart from the original line dipole source, at radii greater
than ~r0 the image dipole was found to appear to be like an actual line source with
the approximation becoming better as 300s /0 but inside the radius ~r0 numerical
computations showed that the field had enormous oscillations, which grew as
300s /0.

A mathematically very similar phenomena was implied by the bold claim of
Pendry (2000) (see also the reviews of Pendry (2004) and Ramakrishna (2005))
that the Veselago slab lens (Veselago 1968), consisting of a slab of material
having thickness d, relative electric permittivity 3sZK1, relative magnetic
permeability msZK1, would act as a superlens: a line (or point) dipole source
located at distance d0 in front of the Veselago lens would when d0!d, have a
line image dipole source (ghost source) lying outside the lens at a distance
dKd0 from the back of the lens. Again there cannot be singularities in the field
lying outside the lens apart from the original line, or point, dipole source as
emphasized by Maystre & Enoch (2004) among others. For the lossless
Veselago lens Garcia & Nieto-Vesperinas (2002) and Pokrovsky & Efros (2002)
claimed the fields lost their square integrability throughout a layer of thickness
2ðdKd0Þ centered on the back interface, although it is not clear to us whether
the claimed divergence within the entire layer in the lossless case is an artifact
of the use of plane wave expansions, in the same way that Taylor series diverge
outside the radius of convergence, but other expansions have different regions
of convergence. One should allow for some small loss, taking 3sZK1C i300s ,
msZK1C im00

s and consider what happens when 300s and m00
s are very small. At

distances greater than dKd0 from the back of the lens the image source
appears to be like an actual line (or point) source with the approximation
becoming better as ð300s ;m00

s Þ/0 but at distances less than dKd0 from the back
of the lens the field has enormous oscillations, which grow as ð300s ;m00

s Þ/0.
Contrary to the conventional picture, the field also has enormous oscillations in
front of the lens as shown by Podolskiy et al. (2005) and these fields are the
ones responsible for cloaking (see also Rao & Ong (2003), Shvets (2003),
Merlin (2004) and Guenneau et al. (2005)) whose investigations provided some
evidence of large fields in front of the lens). We will see here that in fact the
field generated by a constant amplitude line dipole source diverges as 300s ;m

00
s /0

within a distance of dKd0 from either the front or back interface. This
generalizes the result of Milton et al. (2005) where the same regions of field
divergence were found for the quasistatic equations. As that paper will be
frequently referenced, it will be denoted by the acronym MNMP. We will find
that a polarizable line dipole less than a distance d=2 from the Veselago lens
becomes cloaked in the limit as ð300s ;m00

s Þ/0. Furthermore we will see that, in the
quasistatic limit, a polarizable point dipole outside a slab having electric
permittivity 3sZK1C i300s , and any magnetic permeability, becomes cloaked as
300s /0.

Following Milton (2002), §11.7, and MNMP we say an inhomogeneous body
exhibits anomalous localized resonance if as the loss goes to zero (or for static
problems, as the system of equations lose ellipticity) the field magnitude
diverges to infinity throughout a specific region with sharp boundaries not
defined by any discontinuities in the moduli, but the field converges to a smooth
Proc. R. Soc. A (2006)



3029Cloaking effects associated with resonance
field outside that region. A region where the field diverges will be called a region
of local resonance. We will see that cloaking occurs when a polarizable line or
point dipole interacts with the resonant field that is generated by the
polarizable line or point dipole itself, and that the effect of the resonant region
is to cancel the field acting on the polarizable line or point dipole from outside
sources. A region where a polarizable line or point dipole is cloaked will be
called a cloaking region.

Cloaking can also be regarded as a consequence of energy considerations: if
the polarizable line or point dipole was not cloaked then the energy sources in
the system would have to be infinite. As shown in the paper MNMP, and as
stemmed from a suggestion of Alexei Efros (2005, personal communication), a
line dipole source with a fixed dipole moment less than a distance d=2 from the
slab lens would could cause infinite energy loss. (We will see this is true not just
for the quasistatic solution, but also for the solution to Maxwell’s equations for
the Veselago lens.) Any realistic dipole source (such as a polarizable line source)
within this region must have a dipole moment which vanishes as 300s /0. As
the lens provides a perfect image of the source in the limit 300s /0, at least
further than a distance d from the slab, we conclude that the dipole source
will have a vanishingly small effect on the field further than a distance d from
the slab.

We remark that the cloaking effects discussed here extend to static
magnetoelectric equations, as implied by the equivalence discussed in §6 of
MNMP that follows from earlier work of Cherkaev & Gibiansky (1994) and
Milton (2002), §11.6. There it is shown that the two-dimensional quasistatic
dielectric equations in any geometry (and with possible source terms) can be
transformed to a set of magnetoelectric equations (with corresponding source
terms) with a symmetric real positive definite tensor entering the constitutive
law. Therefore properties like superlensing and cloaking which hold for the
quasistatic dielectric equations automatically also hold for the equivalent
magnetoelectric equations.
2. Some simple examples of cloaking in the quasistatic limit

First we present an example which shows that a polarizable line with
polarizability a (and possibly a source term) can be cloaked when immersed in
a TM field surrounding a coated cylinder with inner radius rc, outer radius rs,
and with cylinder axis xZyZ0. The polarizable line is placed along xZr0 and
yZ0, where r0Ors. Suppose ðExðx; yÞ;Eyðx; yÞ; 0Þ is the field without the
polarizable line present due to:

(i) Fields generated by fixed sources not varying in the Z direction lying
outside the radius r� hr2s =rc when 3cs3m, and the radius r#h

ffiffiffiffiffiffiffiffiffiffiffi
r3s =rc

p
when 3cZ3m. (Here we use Z for the z-coordinate to avoid confusion with
zZxC iy). We assume these sources are not perturbed when the
polarizable line is introduced.

(ii) Fields generated by the coated cylinder due to its interaction with these
fixed sources.
Proc. R. Soc. A (2006)
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Let 3m, 3s, and 3c denote the permittivity in the matrix, shell and core, and let
us set

hZ
3mK3c

3m C3c
;

ð3s C3cÞð3m C3sÞ
ð3sK3cÞð3mK3sÞ

Z deif; ð2:1Þ

where d is real and positive. We assume that 3c and 3m remain fixed with 3m real
and positive, and with 3c possibly complex (with non-negative imaginary part)
but not real and negative, and that 3s approachesK3m along a trajectory in the
upper half of the complex plane in such a way that d/0 but f remains fixed.

When 3s is close toK3m equation (2.1) implies

3szðK1C2deif=hÞ3m when 3cs3m;

zðK1C2i
ffiffiffi
d

p
eif=2Þ3m when 3c Z 3m;

)
ð2:2Þ

and so we have

dzj3sC3mjjhj=ð23mÞ when 3cs3m;

zj3sC3mj2=ð432mÞ when 3c Z 3m:

)
ð2:3Þ

Thus, for small d the trajectory approachesK3m in such a way that the argument
of 3sC3m is approximately constant.

Let us drop the Z field component of the electric field since it is zero for TM
fields. The field ðE0

x ;E
0
y Þ acting on the polarizable line has two components:

ðE0
x ;E

0
y ÞZ ðEx CEr

x ;Ey CEr
y Þ; ð2:4Þ

where

Ex hExðr0; 0Þ; Ey hEyðr0; 0Þ; Er
x hEr

x ðr0; 0Þ; Er
y hEr

y ðr0; 0Þ;
ðEr

x ðx; yÞ;Er
y ðx; yÞÞZ ðKvVinðx; yÞ=vx;KvVinðx; yÞ=vyÞ;

)
ð2:5Þ

and Vinðx; yÞ is the (possibly resonant) response potential in the matrix
generated by the coated cylinder responding to the polarizable line itself (not
including the field generated by the coated cylinder responding to the other fixed
sources). The field ðEr

x ;E
r
y Þ must depend linearly on the dipole moment of the

polarizable line, and in fact, as we will see shortly, this dependence has the form

Er
x

Er
y

 !
Z cðdÞ

ke

Kko

 !
; ð2:6Þ

in which, following the notation of MNMP, ke and ko are the (suitably
normalized) dipole moments of the polarizable line (ke gives the amplitude of the
dipole component which has even symmetry about the x-axis while ko gives the
amplitude of the dipole component which has odd symmetry about the x-axis).
We will see that jcðdÞj can diverge to infinity as d/0, and that when this
happens the polarizable line becomes cloaked. Figure 1 shows the cloaking with a
Proc. R. Soc. A (2006)
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fixed dipole line source acting on a polarizable line which is in the cloaking region
of the cylindrical superlens. For comparison figure 2 has the polarizable line
outside the cloaking region.

Now if a denotes the polarizability tensor of the line (which need not be
assumed proportional to I ) and we allow for the fact that the polarizable line
could have a fixed dipole source term, then we have

ke

Kko

 !
Za

E0
x

E0
y

 !
C

ke0

Kko0

 !
; ð2:7Þ

where the source terms ke0 and ko0 are assumed to be fixed. This implies

ke

Kko

 !
Za

Ex

Ey

 !
CacðdÞ

ke

Kko

 !
C

ke0

Kko0

 !
; ð2:8Þ

which when solved for the dipole moment ðke;KkoÞ gives

ke

Kko

 !
Za�

Ex

Ey

 !
C

ke�

Kko�

 !
; ð2:9Þ

where

a� Z ½aK1KcðdÞI �K1;
ke�

Kko�

 !
Z ½IKcðdÞa�K1

ke0

Kko0

 !
; ð2:10Þ

are the ‘effective polarizability tensor’ and ‘effective source terms’.
Notice that when jcðdÞj is very large we have

a�z
KI

cðdÞ ;
ke�

Kko�

 !
z
KaK1

cðdÞ
ke0

Kko0

 !
: ð2:11Þ

So in this limit the effective polarizability tensor has a very weak dependence on
a (unless a has one or more very small eigenvalues) while the effective source
term has a strong dependence on a! Both expressions tend to zero as jcðdÞj/N,
which explains why cloaking occurs.

It is instructive to see what happens to the local field ðE0
x ;E

0
y Þ acting on the

polarizable line as jcðdÞj/N. For simplicity let us suppose ke0Zko0Z0 and
aZaI . Then from equations (2.4), (2.6), (2.9) and (2.10) we see that

E0
x ZEx CcðdÞke ZEx C

cðdÞEx

aK1KcðdÞ Z
Ex

1KacðdÞ ; ð2:12Þ

goes to zero as jcðdÞj/N, and similarly so too does E0
y . This explains why the

‘effective polarizability’ vanishes as jcðdÞj/N: the effect of the resonant field is
to cancel the field ðEx ;EyÞ acting on the polarizable line.

To obtain an explicit expression for cðdÞ we have from equations (2.5), (3.9)
and (3.10) of MNMP that

Vinðx; yÞZ ½f einðzÞC f einð�zÞ�=2C ½f oinðzÞKf oinð�zÞ�=ð2iÞ; ð2:13Þ
Proc. R. Soc. A (2006)
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Figure 2. Same as for figure 1 except the fixed dipole source and the polarizable dipole have been
moved to the right by 2 units to r1Z9 and to r0Z7, respectively. Equivalently, the cylindrical
lens has been moved to the left by 2 units while keeping the fixed dipole source and the
polarizable dipole in the same position. The polarizable dipole is now visible because it is outside
the cloaking region. The computations show that the polarizable dipole has a large moment
keZ0:5C8:39!10K8i and koZ0.
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Figure 1. Numerical computations of equipotentials for (a) Re½V ðzÞ� and (b) Im½V ðzÞ� for a
cylindrical lens with 3mZ3cZ1 and 3sZK1C10K12i, and with rcZ2, rsZ4, r�Z8 and r#Z5:66.
There is a fixed dipole source with ðke1; ko1ÞZð1; 0Þ at zZ7, chosen to be between r� and r#. There is
a polarizable dipole with aZ2 and ðke0; ko0ÞZ0 at zZr0Z5 chosen to be in the cloaking region
(located at the point just to the right of the outermost resonant region). In both figures both the
coated cylinder and the polarizable dipole are essentially invisible outside the cloaking region and
do not disturb the dipole potential surrounding the fixed source. The computations show that the
polarizable dipole has a very small moment keZK6:31!10K7C2:30!10K6i and koZ0. The solid
red regions are below a low cutoff equipotential, while the solid blue regions are above a high cutoff
equipotential.
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where zZxC iy and for pZe; o

f pinðzÞZK
qkpSðd; r2�=ðr0zÞÞ

r0hsc
K

qkpdeifhscSðd; r2s =ðr0zÞÞ
r0

; ð2:14Þ

in which qZ1 for pZe and qZK1 for pZo and

hsch
3sK3c

3s C3c
; Sðd;wÞh

XN
[Z1

w[

1Cdeifh[
; h Z

r2s
r2c

: ð2:15Þ
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Figure 3. Numerical computations of equipotentials for Re½V ðzÞ� for a cylindrical lens with
3mZ3cZ1 and 3sZK1C0:01i, and with rcZ2, rsZ4, r�Z8, and r#Z5:66. A uniform field
EZðK1; 0Þ acts on the system. In the figure on the left the polarizable line dipole with aZ2
and ðke0; ko0ÞZ0 is located close to the lens at r0Z4:166 and it along with the cylindrical lens
are essentially invisible to the uniform field. The computations show that the polarizable line
dipole has keZ0:000012K0:00066i and koZ0. In the figure on the right the polarizable line
dipole is located outside the cloaking region at r0Z5:95 and significantly perturbs the uniform
field. The computations show that the polarizable line dipole has keZK1:68K0:74i and koZ0.
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Differentiating equation (2.13) gives

Er
x ðx; yÞZK½f e0in ðzÞC f e0in ð�zÞ�=2K½f o0in ðzÞKf o0in ð�zÞ�=ð2iÞ;

Er
y ðx; yÞZKi½f e0in ðzÞKf e0in ð�zÞ�=2K½f o0in ðzÞC f o0in ð�zÞ�=2;

)
ð2:16Þ

where

f p0in ðzÞZdf pinðzÞ=dz Z
qkpr2�S

0ðd; r2�=ðr0zÞÞ
r20 z

2hsc
C

qkpr2s de
ifhscS

0ðd; r2s =ðr0zÞÞ
r20 z

2
; ð2:17Þ

in which

S 0ðd;wÞhdSðd;wÞ
dw

Z
XN
[Z1

[w[K1

1Cdeifh[
: ð2:18Þ

These expressions simplify if z is real since then f p0in ðzÞKf p0in ð�zÞZ0 and
ðEr

x ;E
r
y ÞZðKf e0in ðzÞ;Kf o0in ðzÞÞ. In particular with zZr0, we obtain equation (2.6)

with

cðdÞZK
r2�S

0ðd; r2�=r20 Þ
r40hsc

K
r2s de

ifhscS
0ðd; r2s =r20 Þ

r40
: ð2:19Þ

So far no approximation has been made.
To obtain an asymptotic formula for cðdÞ when d is small we use the

approximations

Sðd;wÞz w

1Kw
; S 0ðd;wÞz 1

ð1KwÞ2
for jwj!1; ð2:20Þ
Proc. R. Soc. A (2006)
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implied by lemma 3.1 of MNMP, and the approximations

Sðd;wÞzeKlog w log d=log hTðwÞ;

S 0ðd;wÞzK½log d=ðw log hÞ�eKlog w log d=log hTðwÞCeKlog w log d=log hT 0ðwÞ
zK½log d=ðw log hÞ�eKlog w log d=log hTðwÞ;

9>=
>;
ð2:21Þ

which hold for hO jwjO1 and are implied by equation (3.22) of MNMP, where

TðwÞZ
XN
jZKN

w j

1Ceifhj
; T 0ðwÞZ

XN
jZKN

jw jK1

1Ceifhj
; ð2:22Þ

and in making the last approximation in equation (2.21) we have assumed that d
is so small that jlog dj is very large. (It should be stressed that although we are
assuming extremely small loss here, the polarizable line dipole can still be
cloaked at moderate loss: see figure 3.) Let us first treat the case where 3c is fixed
and not equal to 3m and r0!r�. Then we have hscz1=h and substituting these
approximations in equations (2.14) and (2.19) and keeping only the terms which
are dominant because d is very small gives, for r2�=r0O jzjOrs,

f pinðzÞzKqkphe½log zKlogðr2�=r0Þ�log d=log hrK1
0 Tðr2�=ðr0zÞÞ; ð2:23Þ

which is equivalent to equation (3.33) of MNMP, and implies

f p0in ðzÞz
Kqkph log d

zr0 log h
eKlogðr2�=ðzr0Þlog d=log hTðr2�=ðr0zÞÞ; ð2:24Þ

and

cðdÞz h log d

r20 log h
eK2 logðr�=r0Þlog d=log hTðr2�=r20 Þ: ð2:25Þ

We see that jcðdÞj/N as d/0 when r0!r�. Consequently both the ‘effective
polarizability tensor’ and the ‘effective source terms’ approach zero in the limit
d/0. For simplicity let us suppose aZaI . Then when d is very small from
equations (2.9) and (2.11) we have

kez½KExKaK1ke0�=cðdÞ; koz½EyKaK1ko0 �=cðdÞ: ð2:26Þ

Thus, the resonant potential associated with the polarizable line has, from
equation (2.23),

f einz½Ex CaK1ke0�he½log zKlogðr2�=r0Þ�log d=log hrK1
0 Tðr2�=ðr0zÞÞ=cðdÞ

z½Ex CaK1ke0�dlogðr=r0Þ=log heK2piq=g0r0Tðr2�=ðr0zÞÞlog h=ðTðr2�=r20 Þlog dÞ;
ð2:27Þ

where g0ZK2p log h=log d is the angular distance between peaks in the resonant
potential and zZreiq. Similarly we have

f oinz½EyKaK1ko0 �dlogðr=r0Þ=log heK2piq=g0r0Tðr2�=ðr0zÞÞlog h=ðTðr2�=r20 Þlog dÞ: ð2:28Þ

Thus as d/0 these resonant potentials in the matrix converge to zero in the
region rOr0 but diverge to infinity with increasingly rapid angular oscillations
Proc. R. Soc. A (2006)
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for rs%r!r0. (This is to be contrasted with the resonant potential in the matrix
associated with a line dipole having fixed ke and ko, which as can be seen from
equation (2.23) diverges to infinity in the much larger region rs%r!r2�=r0.)
A simple calculation, based on substituting the formulae (2.26) and (2.25) into
the formula (3.35) and (3.37) in MNMP for the resonant potentials in the shell
and core, shows that the field associated with the polarizable line is resonant in
the entire annulus r2s =r0%r!r0, and converges to zero outside this annulus.

Suppose the source outside is a line dipole with a fixed source term ðke1; ko1ÞZ
ðke1; 0Þ located at the point ðr1; 0Þ, where r1Or�Or0. When r1 is chosen with
r2�=r0Or1Or� the polarizable line will be located within the resonant region
generated by the line source outside. One might at first think that a polarizable
line placed within the resonant region would have a huge response because of the
enormous fields there. However, we will see that the opposite is true: the dipole
moment of the polarizable line still goes to zero as d/0. From equations (2.6),
(2.16) and (2.24), with r0 replaced by r1, the field at the point ðr0; 0Þ when the
polarizable line is absent will be

Ex Z c1ðdÞke1; Eyðx; yÞZ 0; ð2:29Þ

where

c1ðdÞz
h log d

r0r1 log h
eKlogðr2� =ðr0r1ÞÞlog d=log hTðr2�=ðr0r1ÞÞ: ð2:30Þ

This and equation (2.26) implies the polarizable line has a dipole moment

kezK½Ex CaK1ke0�=cðdÞzKc1ðdÞke1=cðdÞ

zK
r0Tðr2�=ðr0r1ÞÞ
r1Tðr2�=r20 Þ

dlogðr1=r0Þ=log hke1: ð2:31Þ

So ke scales as dlogðr1=r0Þ=log h, which goes to zero as d/0 but fairly slowly when r1
and r0 are both close to r�. If the source or sources, are outside the critical radius
rcritZr3s =r

2
c then there are no resonant regions associated with these sources and

both ke and ko will scale like 1=cðdÞ, i.e. asKd2 logðr�=r0Þ=log h=log d, which goes to
zero at a faster rate as d/0, but still slowly when r0 is close to r�. On the other

hand when r0 is close to rs we have r�=r0z
ffiffiffi
h

p
and this latter scaling is

approximatelyKd=log dwK300s =log 3
00
s which is quite fast.

Let us examine more closely what happens when r0 approaches rs while
keeping d fixed (here d is not necessarily small). Then r2�=r

2
0 is close to h and the

series S 0ðd; r2�=r20 Þ is close to diverging for any fixed d. When zZw=h is close to 1
then equation (2.18) implies

S 0ðd;wÞz 1

deifh

XN
[Z1

[z[K1 Z
1

deifh

d

dz

XN
[Z1

z[ Z
hscð3mK3sÞ

ð3m C3sÞð1KzÞ2h
; ð2:32Þ

and as a result from equation (2.19) we have

cðdÞzK
r2�S

0ðd; r2�=r20 Þ
r40hsc

z
Kr2s ð3mK3sÞ

ð3mC3sÞðr20Kr2s Þ2
z

Kð3mK3sÞ
4ð3mC3sÞðr0KrsÞ2

; ð2:33Þ
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Figure 4. Numerical computations of equipotentials for (a) Re½V ðzÞ� and (b) Im½V ðzÞ� for a cylindrical
lens with 3mZ3cZ1 and 3sZK1C10K12i, and with rcZ2, rsZ4, r�Z8, and r#Z5:66. There is a
constant energy source with keZ1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ImðcðdÞÞ

p
Z0:00066 and koZ0 at zZr0ZðrsCr#Þ=2Z4:83,

chosen to be midway between rs and r#. The fields are very small outside the cloaking region.
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which diverges as r0/rs and is asymptotically independent of rc and 3c. Thus,
the polarizable line dipole becomes cloaked so long as 3ss3m. This cloaking is not
due to anomalous localized resonance, as can be seen by considering a polarizable
line or point dipole in a material of permittivity 3m outside a half-space filled with
material having relative permittivity 3s. In this system the cloaking is due to the
interaction of the polarizable line dipole with its image line dipole, and the effect
is magnified when 3s is close toK3m.

The asymptotic analysis is basically similar when 3cZ3m and r0!r#hffiffiffiffiffiffiffiffiffiffiffi
r3s =rc

p
. Then hsczieKif=2=

ffiffiffi
d

p
and from equations (2.14), (2.19), and (2.21) we

have

f pinðzÞziqkpeif=2e½log zKlogðr�rs=r0Þ�log d=log hrK1
0 Tðr2�=ðr0zÞÞ; ð2:34Þ

which is equivalent to equation (3.34) of MNMP, and

cðdÞzKieif=2log d

r20 log h
eKlogðr�rs=r20 Þlog d=log hTðr2�=r20 Þ; ð2:35Þ

which diverges as d/0 when r0!r#. When all the sources lie outside the critical
radius r� so they do not generate any resonant regions in the absence of the
polarizable line, both ke and ko will scale as 1=cðdÞ, i.e. as dlogðr�rs=r20 Þ=log h=log d, as
d/0. When r0 is close to rs we have r�rs=r

2
0 z

ffiffiffi
h

p
and this latter scaling is

approximately K
ffiffiffi
d

p
=log dwK300s =log 300s , which is the same as when 3cs3m.

Figure 3a shows the cloaking with uniform field acting on a polarizable line which
is close to the cylindrical superlens. For comparison figure 3b has the same
polarizable line outside the cloaking region. By substituting equation (2.26) in
equation (2.34) we obtain

f einðzÞzK½ExCaK1ke0�ieif=2e½log zKlogðr�rs=r0Þ�log d=loghrK1
0 Tðr2�=ðr0zÞÞ=cðdÞ

z½ExCaK1ke0�dlogðr=r0Þ=logheK2piq=g0r0Tðr2�=ðr0zÞÞlogh=ðTðr2�=r20 ÞlogdÞ; ð2:36Þ
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Figure 5. Same as for figure 4 except now the coated cylinder has 3cZ3 giving keZ
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ImðcðdÞÞ

p
Z0:000022. Again the fields are very small outside the cloaking region.
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which is the same final expression as in equation (2.27). Likewise equation (2.28)
still holds. It follows from these expressions and similar analysis based on
equation (3.36) and (3.37) of MNMP that as d/0 the resonant potentials
diverge with increasingly rapid oscillations in the two non-overlapping annuli
r0OrOr2s =r0 and rcr0=rsOrOrcrs=r0. Outside these annuli the field converges to
the field generated by the fixed sources.

As another interesting example, let us suppose that a single line dipole energy
source with, for simplicity, koZ0 is placed in the cloaking region, and that ke is
real and adjusted so that the electrical power W0 dissipated in the coated
cylinder remains constant as the loss goes to zero. Specifically using the identity
(4.10) in MNMP we keep

W0 Z ðu=2Þ
ð
jzj%rs

dx dy 300Eðx; yÞ$Eðx; yÞ Zup3mk
eIm½E0

x �; ð2:37Þ

fixed, where the two-dimensional integral is over the area of the coated cylinder
(where the loss is) and E0

x is the local field acting on the source, which because
there are no other sources present is just field Er

x generated by the dipole
source alone. Since from equation (2.6) we have that Er

xZcðdÞke, we deduce
that

ke Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0=fup3mIm½cðdÞ�g

p
: ð2:38Þ

As a consequence when 3cZ3m we have from equations (2.34) and (2.35) that

f einðzÞzieif=2dlogðr=r#Þ=log heK2piq=g0Tðr2�=ðr0zÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KW0 log h

up3mðlog dÞRe½eif=2Tðr2�=r20 Þ�

s
;

ð2:39Þ

which, as d/0, diverges when rs!r!r# but converges to zero for rOr#. By
similar analysis, based on equations (3.36) and (3.37) of MNMP we see that the
field is resonant in the two touching annuli r#OrO

ffiffiffiffiffiffiffiffi
rcrs

p
and

ffiffiffiffiffiffiffiffi
rcrs

p
OrOr#

where r#Z
ffiffiffiffiffiffiffiffiffiffiffi
r3c =rs

p
and converges to zero outside these annuli: see figure 4.
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When 3cs3m we have from equations (2.23) and (2.25) that the resonant field
in the matrix is

f einðzÞzKhdlogðr=r�Þ=log heK2piq=g0Tðr2�=ðr0zÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W0 log h

up3mðlog dÞIm½hTðr2�=r20 Þ�

s
; ð2:40Þ

which, as d/0, diverges when rs!r!r� but converges to zero for rOr�. By
similar analysis, based on equations (3.35) and (3.37) in MNMP, we see that the
field is resonant in the entire annulus rc!r!r� and converges to zero outside
this annulus: see figure 5.

Thus, even constant energy sources become invisible to an observer outside
the cloaking region as d/0. All their energy gets trapped and absorbed in the
lens. In this sense the lens behaves as a sort of ‘electromagnetic black hole’.
A different sort of localization of the energy was discovered by Cui et al. (2005).
They considered two opposing dipole sources on opposite sides of the lossless
Veselago lens. Each source is positioned a distance d=2 from the lens. They found
that the electromagnetic energy was confined to the layer of thickness 2d
between the sources (i.e. the cloaking region): outside this layer the field from the
nearest source cancels exactly the field from the image of the other source. In
another recent development Guenneau et al. (2005) found that electromagnetic
radiation would be trapped in the vicinity of two touching corners of negative
index material.

To obtain the corresponding cloaking results for a slab rather than a
coated cylinder we let rs, rc and r0 tend to infinity while keeping dZrsKrc and
d0Zr0Krs fixed. Let us define �

zZ
�
xC i

�
yZzKrs so that the polarizable line is at

�
zZd0 and so that the slab faces will be at

�
xZ0 and

�
xZKd. In this limit we have

r�zrsCd; r#zrs Cd=2; log hz2d=rs; logðr�=r0ÞzðdKd0Þ=rs;

logðr�rs=r20 ÞzðdK2d0Þ=rs; logðz=r0Þzð
�
zKd0Þ=rs;

r2�
r20

z1C
2dK2d0

rs
;

r2�
r0z

z1C
2d � d0 � z_

rs
:

9>>>>>>>=
>>>>>>>;
ð2:41Þ

Also we use the approximation, given in equation (4.3) of MNMP, that
Tð1Cb=rsÞzrsQðbÞ, where

QðbÞh
ðN
KN

dv
evb

1CeifC2dv
Z

peKifb=ð2dÞ

2d sin½pb=ð2dÞ� : ð2:42Þ

For a polarizable line source with these approximations (2.27) and (2.28) reduce
to

f einz2dðEx CaK1ke0Þd
ð
�
zKd0Þ=2dQð2dKd0K�

zÞ=½Qð2dK2d0Þlog d�;

f oinz2dðEyKaK1ko0Þd
ð
�
zKd0Þ=2dQð2dKd0K�

zÞ=½Qð2dK2d0Þlog d�;

9=
; ð2:43Þ
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Figure 6. The resonant regions, represented by the shaded regions, for a line dipole source,
represented by the solid circle, outside a slab having permittivity 3s close to K3m and with
interfaces represented by the solid lines. (a), (b) and (c) are for 3cZ3m, while (d ), (e) and (f ) are for
3cs3m, where 3m is the permittivity on the (front) side of the slab where the source is located,
while 3c is the permittivity on the other side of the slab. (a) and (d ) are for a line dipole source with
ke and ko fixed. (b) and (e) are for a polarizable line dipole source. (c) and (f ) are for a constant
energy source. The crosses denote ghost sources, i.e. image sources in the physical region, and the
cross hatched areas are where two resonant regions overlap.
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while equation (2.25) implies

cðdÞzh½ð1=2dÞlog d�dðd0KdÞ=dQð2dK2d0Þ when 3cs3m; d0!d; ð2:44Þ
and equation (2.35) reduces to

cðdÞzKieif=2½ð1=2dÞlog d�dð2d0KdÞ=2dQð2dK2d0Þ when 3c Z 3m; d0!d=2: ð2:45Þ
For a polarizable line source with 3cZ3m and d0!d=2 (corresponding to the
symmetric lens studied by Pendry (2000)) the field is resonant in two layers each
of thickness 2d0, one centered at the front interface and the other centered at the
back interface. For a constant energy source with 3cZ3m and d0!d=2 the field is
resonant in two touching layers each of thickness d also centered at the
interfaces. For a polarizable line source with 3cs3m and d0!d (corresponding to
the asymmetric lens studied by Ramakrishna et al. (2002)) the field is resonant in
the layer of thickness 2d0 centered at the front interface (i.e. in the region
d0O�

xOKd0). For a constant energy source with 3cZ3m and d0!d the field is
resonant in a layer of thickness 2d extending from a distance d in front of the lens
to the back interface of the lens (i.e. in the region dO

�
xOKd). The locations of

the different resonant regions are summarized in figure 6.
3. A proof of cloaking for an arbitrary number of polarizable line dipoles

It is not clear if the concept of ‘effective polarizability’ has much use when two or
more polarizable lines are positioned in the cloaking region since each polarizable
line will also interact with the resonant regions generated by the other
polarizable lines and if the polarizable lines are not all on a plane containing
the coated cylinder axis then these interactions will oscillate as d/0. However,
Proc. R. Soc. A (2006)
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we will see here that nevertheless the dipole moment of each polarizable line in
the cloaking region must go to zero as d/0 and in such a way that no resonant
field extends outside the cloaking region. This is not too surprising. Based on the
results for a single dipole line we expect that a resonant field extending outside
the cloaking region would cost infinite energy, and the only way to avoid this is
for the dipole moment of each polarizable line in the cloaking region to go to zero
as d/0.

Here we limit our attention to the cylindrical lens with the core having
(approximately) the same permittivity as the matrix. Also to simplify the
analysis we assume the core (but not the matrix) has some small loss. Specifically
we assume

3m Z 1; 3s ZK1C ies; 3c Z 1C iec; ð3:1Þ

with es and ec having positive real parts and approaching zero in such a way that
the ratio gZec=es, which could be complex, remains fixed and f given by
equation (2.1) also remains fixed. In this limit (2.1) implies ðesCecÞesz4deif and
since es and ec have positive real parts we deduce that f is not equal to p orKp.
Using the relation gZec=es we see that

es Z 2
ffiffiffi
d

p
eif=2=

ffiffiffiffiffiffiffiffiffiffiffiffi
1Cg

p
; ec Z 2

ffiffiffi
d

p
eif=2g=

ffiffiffiffiffiffiffiffiffiffiffiffi
1Cg

p
: ð3:2Þ

The potential in the core due to a single dipole at z0, with jz0jOrs is

Vcðr; q; z0ÞZ ½f ec ðz; z0ÞC f ec ð�z; �z0Þ�=2C ½f oc ðz; z0ÞKf oc ð�z; �z0ÞÞ�=ð2iÞ; ð3:3Þ

where zZreiq, z0Zr0e
iq0 , and

f pc ðz; z0ÞZ
XN
[Z0

Ep
[ ðz0Þz

[; ð3:4Þ

for pZe and pZo, and for all [s0

Ep
[ ðz0ÞZ

KkpbðdÞðh=z0Þ[

r0ð1Cdeifh[Þ ; bðdÞh 43s
ð3sK3cÞð1K3sÞ

; ð3:5Þ

and bðdÞ depends on d through the dependence of 3s and 3c on d but tends to 1 as
d/0. Here ke and ko are the amplitudes of the dipole components which have
even and odd symmetry about the line qZq0, respectively. These formulae agree
with the formulae given in equations (2.5) and (3.13) of MNMP when z0Zr0 is
real, and since the rotational invariance property Vcðr; q; z0ÞZVcðr; qKq0; r0Þ is
satisfied we deduce that the formula is correct when z0 is complex. (In the
formula for Ep

[ ðz0Þ the requirement of rotational invariance necessitates the
factor of 1=ðr0z[0Þ, rather than say a factor of 1=z[C1

0 ).
If there are m dipoles at z1; z2;.; zm (where ziszj for all isj) all outside the

coated cylinder then, by the superposition principle, the potential in the core is

Vc Z
XN
[Z0

E
ð1Þ
[ z[ CE

ð2Þ
[ �z[; ð3:6Þ
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where for [s0

E
ð1Þ
[ Z

h[bðdÞ
ð1Cdeifh[Þ

Xm
jZ1

ðkð1Þj =rjÞð1=zjÞ[;

E
ð2Þ
[ Z

h[bðdÞ
ð1Cdeifh[Þ

Xm
jZ1

ðkð2Þj =rjÞð1=�zjÞ[;

ð3:7Þ

in which

k
ð1Þ
j Z ðKkej C ikoj Þ=2; k

ð2Þ
j ZKðkej C ikoj Þ=2: ð3:8Þ

Let us suppose the dipoles positioned at z1; z2;.; zg with 1%g%m are in the
cloaking region, while the remainder of the dipoles are outside the cloaking
region, i.e.

jzj j%r# for all j%g; jzj jOr# for all jOg; ð3:9Þ

where we allow for the special case where some of the dipoles have jzj jZr#: as we
will see, these are also cloaked. We do not specify how the set of dipole moments
fk1; k2;.; kmg depends on d except for the following.

(i) We assume that each dipole outside the cloaking region has moments which
converge to fixed limits as d/0

lim
d/0

ðkej ðdÞ; koj ðdÞÞZ ðkej0; koj0Þ for all jOg: ð3:10Þ

The dipole moments kej ðdÞ and koj ðdÞ inside or outside the cloaking region are

assumed to depend linearly on the field acting upon them, since non-
linearities would generate higher order frequency harmonics. Some of them
could be energy sinks, although at least one of them should be an energy
source.

(ii) We assume that the energy absorbed per unit time per unit length of the
coated cylinder remains bounded as d/0, as, e.g. must be the case if the
line sources only supply a finite amount of energy per unit time per unit
length. We let Wmax be the maximum amount of energy available per unit
time per unit length. It is supposed that the quasistatic limit is being taken
not by letting the frequency u tend to zero, but instead by fixing the
frequency u and reducing the spatial size of the system and using a
coordinate system which is appropriately rescaled.

We need to show that, because the energy absorption in the core remains
bounded, the dipole moments in the cloaking region go to zero as d/0 and the
resonant field does not extend outside the cloaking region, r%r#. This is
certainly true when only one polarizable line is present but as cancellation effects
can occur (the energy absorption associated with two line dipoles can be less than
the absorption associated with either line dipole acting separately) a proof is
needed.

To do this, we bound kei and koi for any given i%g using the fact that the
energy loss within the lens is bounded by Wmax. If WcZWcðdÞ represents
Proc. R. Soc. A (2006)
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the energy dissipated in the core, then we have the inequality

Wc Z ðu=2Þ300c
ðrc
0
r dr

ð2p
0

dqEðzÞ$EðzÞRðu=2Þ300c
ðrc
0
r dr

!

ð2p
0

dqExðzÞExðzÞ; ð3:11Þ

in which 300cZImð3cÞZReðecÞ and ExðzÞ is the x component of the electric field in
the core given by

ExðzÞZK
vVc

vx
ZK

XN
[Z1

[r[K1ðEð1Þ
[ eið[K1Þq CE

ð2Þ
[ eKið[K1ÞqÞ: ð3:12Þ

Substituting this expression for the electric field back in equation (3.11) and
using the orthogonality properties of Fourier modes we then have

2Wc=uR2p300c

ðrc
0
drðEð1Þ

1 CE
ð2Þ
1 ÞðEð1Þ

1 CE
ð2Þ
1 ÞrC

XN
[Z2

[2r2[K1ðEð1Þ
[ E

ð1Þ
[ CE

ð2Þ
[ E

ð2Þ
[ Þ

Rp300c r
2
c ðE

ð1Þ
1 CE

ð2Þ
1 ÞðEð1Þ

1 CE
ð2Þ
1 ÞCp300c

XN
[Z2

[r2[c ðEð1Þ
[ E

ð1Þ
[ CE

ð2Þ
[ E

ð2Þ
[ Þ

Rp300c
XnCmK1

[Zn

[r2[c ðEð1Þ
[ E

ð1Þ
[ CE

ð2Þ
[ E

ð2Þ
[ ÞZp300c

XmK1

kZ0

bkðUkUkCVkVk Þ;

ð3:13Þ
where the last identity is obtained using equation (3.7) with the definitions

bkhðnCkÞðr�=riÞ2nC2k jbðdÞ=ð1CdhnCkeifÞj2;

Ukh
Xm
jZ1

ujðri=zjÞk ; ujhðri=zjÞnk
ð1Þ
j =rj ;

Vkh
Xm
jZ1

vjðri=�zjÞk ; vjhðri=�zjÞn=k
ð2Þ
j =rj ;

9>>>>>>>=
>>>>>>>;

ð3:14Þ

in which kZ[Kn, nR2 remains to be chosen, and i%g. From equation (3.14) it
follows that UZMu and VZMv, where M is the Vandermonde matrix

MZ

1 1 1 . 1

ri=z1 ri=z2 ri=z3 . ri=zm

ðri=z1Þ2 ðri=z2Þ2 ðri=z3Þ2 . ðri=zmÞ2

« « « 1 «

ðri=z1ÞmK1 ðri=z2ÞmK1 ðri=z3ÞmK1 . ðri=zmÞmK1

0
BBBBBBBB@

1
CCCCCCCCA
: ð3:15Þ

From the well-known formula for the determinant of a Vandermonde matrix it
follows that M is non-singular. Therefore there exists a constant ciO0 (which is
the reciprocal of the norm of MK1 and which only depends on i, m and the zj)
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such that jU jRcijuj and jV jRcijvj, implying

jU j2CjV j2Rc2i ðjuj2Cjvj2ÞRc2i ðjuij2Cjvij2ÞZc2i ðjk
ð1Þ
i j2Cjkð2Þi j2Þ=r2i : ð3:16Þ

Next we need to select n and find a lower bound on bk which is independent of k.
Let sZKlogd=logh (so dhsZ1) and take n as the smallest integer greater than or
equal to s so nRsRnK1. Then since r�Ori we have

ðr�=riÞ2nRðr�=riÞ2sZdK2 logðr�=riÞ=loghZdK1=2dK2 logðr#=riÞ=logh: ð3:17Þ

Also the following inequalities hold for mK1RkR0

1Zdhs%dhn%dhnCk and dhnCk%dhsC1Ck%dhsCmZhm: ð3:18Þ

So it follows that

j1CdhnCkeifj%ah max
1%t%hm

j1Cteifj; ð3:19Þ

and a is independent of d. From the bounds (3.17) and (3.19) we deduce that

bkRsðr�=riÞ2kdK1=2dK2 logðr#=riÞ=loghjbðdÞj2=a2

RKðlogd=loghÞdK1=2dK2 logðr#=riÞ=loghjbðdÞj2=a2:
ð3:20Þ

Combining inequalities gives

2Wc=uR
p300c jbðdÞj2ffiffiffi
d

p
a2logh

ðKlogdÞdK2 logðr#=riÞ=loghðjU j2CjV j2Þ

R
p300c jbðdÞj2c2iffiffiffi
d

p
a2r2i logh

ðKlogdÞdK2 logðr#=riÞ=loghðjkð1Þi j2Cjkð2Þi j2Þ; ð3:21Þ

in which the real positive prefactor has the property that

rihlim
d/0

p300c jbðdÞj2c2iffiffiffi
d

p
a2r2i logh

Z
2pc2i

a2r2i logh
Reðeif=2g=

ffiffiffiffiffiffiffiffiffiffiffi
1Cg

p
Þ; ð3:22Þ

is positive and non-zero, where ReðwÞ denotes the real part of w. So there exists a
d0 such that, for all positive d!d0 and all i%g,

p300c jbðdÞj2c2iffiffiffi
d

p
a2r2i logh

Rr=2; where rhmin
i%g

riO0: ð3:23Þ

By the triangle inequality we have

jkð1Þi j2Cjkð2Þi j2Zjkð1Þi j2CjKk
ð2Þ
i j2Rmaxfjkei j2;jkoi j2g; ð3:24Þ

and so we conclude that

jkpi j%2dlogðr#=riÞ=logh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KWc=ður logdÞ

p
; ð3:25Þ

which forces the dipole moment kpi to go to zero as d/0 (even when riZr#)
because WcZWcðdÞ%Wmax.
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Now the superposition principle implies that the potential at any point z in the
matrix is

V ðzÞZ
Xm
jZ1

kej V
e
j ðzÞCkoj V

o
j ðzÞ; ð3:26Þ

where V e
j ðzÞ (or V o

j ðzÞ) is the potential in the matrix due to an isolated line
dipole at the point zj with kej Z1, koj Z0 (respectively with kej Z0, koj Z1). Now

according to theorem 3.2 in MNMP (which is easily extended to the case treated
here where 3c depends on d) it follows that for jzjOmaxfrs; r2#=rjg,

lim
d/0

V p
j ðzÞZ ~V

p
j ðzÞZ ½~f ej ðzÞC~f

e
j ð�zÞ�=2C ½~f oj ðzÞK~f

o
j ð�zÞ�=ð2iÞ; ð3:27Þ

where, because 3c approaches 3m,

~f
e
j ðzÞZ ½1=ðzKzjÞC1=ð�zK�zjÞ�=2; ~f

o
j ðzÞZ ½1=ðzKzjÞK1=ð�zK�zjÞ�=ð2iÞ: ð3:28Þ

Also as shown above equation (3.27) in MNMP if r2#=rjO jzjOrs, then V p
j ðzÞ

diverges as dKa where aZ logðr�rs=rj jzjÞ=log h. If zj is outside the cloaking region
(i.e. jOg) then r2#=rj will be less than r#. So using the well-known fact that

lim
d/0

eðdÞf ðdÞZ e0f0; where e0 Z lim
d/0

eðdÞ; f0 Z lim
d/0

f ðdÞ; ð3:29Þ

it follows that

lim
d/0

kpj V
p
j ðzÞZ kpj0

~V
p
j ðzÞ for all jzjOr#; jOh; pZ e; o: ð3:30Þ

If zi is inside the cloaking region (i.e. i%g) and jzjOr2#=ri then equations (3.27),
(3.29) and the fact that jkpi j tends to zero implies that kpi V

p
i ðzÞ will tend to zero. For

r2#=riO jzjOr# we have that V p
i ðzÞ scales as dKa with aZ logðr�rs=ðrijzjÞÞ=log h

while from equation (3.25) kpi scales at worst as db=ðKlog dÞ with bZ logðr#=riÞ=
log h. So their product kpi V

p
i ðzÞ will scale at worst as dbKa=ðKlog dÞ where

bKaZ logðjzj=r#Þ=log h. This goes to zero as d/0 when jzjOr#. By taking the
limit d/0 of both sides of equation (3.26) we conclude that

lim
d/0

V ðzÞZ
Xm

jZhC1

kej0 ~V
e
j ðzÞCkoj0 ~V

o
j ðzÞ for all jzjOr#; ð3:31Þ

which proves that the coated cylinder and all the line dipoles inside the cloaking
region are invisible outside the cloaking region in this limit.

More can be said if there is only one dipole line outside the cloaking region, i.e.
gZmK1, and the dipoles inside the cloaking region are always quasistatic
energy sinks, in the sense that for all j%g the inequality

Im½�kej E0ðjÞ
x K�k

o
j E

0ðjÞ
y �%0; ð3:32Þ

is satisfiednomatterwhat is thevalueof thefield ðE0ðjÞ
x ;E

0ðjÞ
y Þ actingonthe linedipole

at zj . For example, if the line dipole at xj responds linearly to the local field with

kej

Kkoj

 !
Zaj

E
0ðjÞ
x

E
0ðjÞ
y

0
@

1
A for all j%g; ð3:33Þ
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then equation (3.32) will be satisfied provided ajCaT
j has a positive semidefinite

imaginary part.
From equation (4.10) of MNMP, generalized to allow for more than one line

dipole, it follows that

Wc%ðu=2Þ
ð
jzj%rs

dx dy 300Eðx; yÞ$Eðx; yÞ Zup
Xm
jZ1

Im½�kej E0ðjÞ
x K�k

o
j E

0ðjÞ
y �

%upIm½�kemE0ðmÞ
x K�k

o
mE

0ðmÞ
y �%upj�kemE0ðmÞ

x K�k
o
mE

0ðmÞ
y j

%up½jkemjjE0ðmÞ
x jC jkomjjE0ðmÞ

y j�:

ð3:34Þ

Also equation (3.26) implies

E0ðmÞ
x Z

Xg
jZ1

kej E
eðjÞ
x ðzmÞCkoj E

oðjÞ
x ðzmÞ; E0ðmÞ

y Z
Xg
jZ1

kej E
eðjÞ
y ðzmÞCkoj E

oðjÞ
y ðzmÞ;

ð3:35Þ
where

EpðjÞ
x ðzÞhK

vV p
j ðzÞ
vx

; EpðjÞ
y ðzÞhK

vV p
j ðzÞ
vy

: ð3:36Þ

So we have

jE0ðmÞ
x j%

Xg
jZ1

jkej jjEeðjÞ
x ðzmÞjC jkoj jjEoðjÞ

x ðzmÞj;

jE0ðmÞ
y j%

Xg
jZ1

jkej jjEeðjÞ
y ðzmÞjC jkoj jjEoðjÞ

y ðzmÞj:

9>>>>=
>>>>;

ð3:37Þ

Now from equation (3.25) when d!d0

jkpi j%2dlogðr#=rmaxÞ=log h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KWc=ður log dÞ

p
; where rmaxhmax

i%g
ri; ð3:38Þ

and this with the inequalities (3.34) and (3.37) implies

Wc%jdlogðr#=rmaxÞ=log h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KuWc=log d

p
; ð3:39Þ

where

jZ 2p
ffiffiffiffiffiffiffiffiffiffiffi
ð1=rÞ

p Xg
jZ1

jkemjðjEeðjÞ
x ðzmÞjC jEoðjÞ

x ðzmÞjÞC jkomjðjEeðjÞ
y ðzmÞjC jEoðjÞ

y ðzmÞjÞ:

ð3:40Þ

As d/0 this tends to

j0 Z 2p
ffiffiffiffiffiffiffiffiffiffiffi
ð1=rÞ

p Xg
jZ1

jkemjðj ~E
eðjÞ
x ðzmÞjC j ~EoðjÞ

x ðzmÞjÞC jkomjðj ~E
eðjÞ
y ðzmÞjC j ~EoðjÞ

y ðzmÞjÞ;

ð3:41Þ
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where

~E
pðjÞ
x ðzmÞZK

v ~V
p
j ðzÞ
vx

; ~E
pðjÞ
y ðzmÞZK

v ~V
p
j ðzÞ
vy

: ð3:42Þ

So there exists a positive d1!d0 such that j%2j0 for all d!d1 and from
equation (3.39) we deduce that

Wc%K4uj2
0d

2 logðr#=rmaxÞ=logðhÞ=log d; ð3:43Þ

which goes to zero as d/0. Similarly the energy absorption in the shell goes to
zero as d/0. Combining this with equation (3.25) gives an improved bound on
the ith dipole moment in the cloaking region:

jkpi j%K4j0

ffiffiffiffiffiffiffiffiffiffiffi
ð1=rÞ

p
dlog½r

2
#=ðrmaxriÞ�=log h=log d: ð3:44Þ

For r2#=rjO jzjOrmax we have thatV
p
j ðzÞ scales as dKa with aZ logðr2#=ðrj jzjÞÞ=log h

while kpj scales at worst as db=ðKlog dÞ with bZ log½r2#=ðrjrmaxÞ�=log h. So their
product kpj V

p
j ðzÞ will scale at worst as dbKa=ðKlog dÞ where bKaZ logðjzj=rmaxÞ=

log h. This goes to zero as d/0 when jzjOrmax. So all the dipoles in the cloaking
region will have vanishingly small contribution to the potential V ðzÞ outside the
radius rmax.Therewill be a resonantfield in the regionbetween rmax and r# if andonly
if r2#=rmOrmax and even if this resonant field is present, its asymptotic formwill not
be influenced by the dipoles in the cloaking region.

By the superposition principle this last result extends to the case where an
arbitrary number of line dipoles lie outside the cloaking region provided their
moments ðkej ; koj Þ for jOg do not depend on d and provided the line dipoles inside
the cloaking region have a linear response of the form (3.33) with the imaginary
part of ajCaT

j being positive semidefinite for all j%g.
4. Cloaking properties of the Veselago slab lens

Let us now move away from quasistatics and investigate the cloaking properties
of the Veselago slab lens at fixed but arbitrary frequency u. We assume the lens
has relative permittivity 3sZK1C ie and relative permeability msZK1C in,
where e and n are now assumed to be real, and that the surrounding medium has
relative permittivity and relative permeability both equal to 1.

We assume that the source is a line electrical dipole positioned along the
Z-axis, ðx; yÞZð0; 0Þ with the slab faces at the planes xZd0 and xZd0Cd, with
d being the slab thickness and d0 being the distance from the source to the lens.
For TM polarization all the electromagnetic field components are easily
calculated once one has determined the only non-zero component of the
magnetic field HZðx; yÞ, where we have used a capital Z for the z-coordinate to
avoid confusion with zZxC iy. By the superposition principle HZðx; yÞ is given
by the expression

HZðx; yÞZ
ðN
KN

dkyaðkyÞtðx; y; kyÞ; ð4:1Þ
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where for a line dipole source

aðkyÞZKu½keðky=kxÞC iko�=2; with kx Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=c2Kk2y

q
; ð4:2Þ

in which ke is the (possibly complex) strength of the dipole component which has
an electric field component Exðx; yÞ with even symmetry about the x-axis (i.e.
with Exðx;KyÞZExðx; yÞ and HZðx;KyÞZKHZðx; yÞ) and ko is the (possibly
complex) strength of the dipole component which has Exðx; yÞ with odd symmetry
about the x-axis (i.e. with Exðx;KyÞZKExðx; yÞ and HZðx;KyÞZHZðx; yÞ): these
have been normalized so that they are consistent with the quasistatic definitions
of ke and ko (which are not to be confused with wavevectors such as kx and ky
which have subscripts). The transfer function tðx; y; kyÞ represents the solution
for HZ when a plane wave with an incident field H inc

Z ZeiðkxxCkyyKutÞ comes
towards the lens from the left. Let tmðx; y; kyÞ, tsðx; y; kyÞ and tcðx; y; kyÞ denote
the expressions for tðx; y; kyÞ in front (to the left) of the slab lens, in the slab
lens, and behind (to the right) of the slab lens, respectively. In each region
tðx; y; kyÞ is a linear combination of two plane waves except behind the slab lens,
where there is only an outgoing plane wave. The coefficients can be determined
from the requirement of continuity of the tangential components of the magnetic
and electric fields across each interface, i.e. from the continuity of tðx; y; kyÞ and
ð1=3Þvtðx; y; kyÞ=vx. In this way explicit expressions for these transfer functions
can be derived (e.g. Kong (2002) and Podolskiy & Narimanov (2005)) but here
we will only need their asymptotic forms.

For fixed ky we have

lim
e;n/0

tðx; y; kyÞZ t0ðx; y; kyÞheiðkxxCkyyÞ for x!d0;

hei½kxð2d0KxÞCkyy� for d0!x!dCd0;

hei½kxðxK2dÞCkyy� for xOdCd0: ð4:3Þ

Let us choose a very large positive number kc which is to remain fixed as e; n/0.
Then the integral (4.1) can be rewritten as

HZðx; yÞZ ½Aðx; yÞCBðx; yÞCCðx; yÞ�; ð4:4Þ

where
Aðx; yÞZ

ÐN
kc
dkyaðkyÞtðx; y; kyÞ;

Bðx; yÞZ
Ð kc
Kkc

dkyaðkyÞtðx; y; kyÞ;

Cðx; yÞZ
ÐKkc
KN dkyaðkyÞtðx; y; kyÞ;

9>>=
>>; ð4:5Þ

and let us define

H 0
Zðx; yÞZ lim

e;n/0
Bðx; yÞZ

ðkc
Kkc

dkyaðkyÞt0ðx; y; kyÞ: ð4:6Þ

It follows from equation (4.3) that this field has the mirroring properties

H 0
Zðx; yÞZH 0

Zð2d0Kx; yÞ for 0!x!2d0;

H 0
Zðx; yÞZH 0

Zð2d0 C2dKx; yÞ for d0!x!d0 C2d;

)
ð4:7Þ
Proc. R. Soc. A (2006)



G. W. Milton and N.-A. P. Nicorovici3048
which combine to give the shifting property

H 0
Zðx; yÞZH 0

ZðxK2d; yÞ for 2d!x!d0C2d; ð4:8Þ
that is responsible for the superlensing.

In the region 0!x!d0 the field H 0
Zðx; yÞ is approximately that due to the dipole

line with the lens absent, except near the plane xZ0. Incidentally, the analytic
continuation of this field to the region x!0 will be an enormously large field with
spatial oscillations on the length scale of 1=kc. In the region d0!x!2d0 the field
H 0

Zðx; yÞ is approximately that due to a solitary ghost line dipole at ðx; yÞZð2d0; 0Þ,
except near the plane xZ2d0. Similarly, in the region 2d!x!d0C2d the field
H 0

Zðx; yÞ is approximately that due to a solitary ghost line dipole at ðx; yÞZð2d; 0Þ,
except near the plane xZ2d. In the region 2d0!x!2d the field H 0

Zðx; yÞ will be
enormously large (but bounded for fixed kc) with spatial oscillations on the length
scale of 1=kc. In this region and in the region 2d0Kd!x!d the fieldH 0

Zðx; yÞwill be
dwarfed by the field Aðx; yÞCCðx; yÞ for sufficiently small d.

For large jkyj and small loss (i.e. small e and n) very good approximations to
the transfer functions have been derived by Podolskiy & Narimanov (2005) and
Podolskiy et al. (2005) and are given by

tmðx; y; kyÞzeKkxCikyy C
ixekð2dK2d0CxÞ

1Cx2e2kd
eikyy;

tsðx; y; kyÞz
ekðxK2d0Þ C ixekð2dKxÞ

ð1C ixÞð1Cx2e2kdÞ
eikyy;

tcðx; y; kyÞz
ekð2dKxÞ

1Cx2e2kd
eikyy;

9>>>>>>>>>>=
>>>>>>>>>>;

ð4:9Þ

in which kZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2yKu2=c2

q
and x is the loss function

xZ
1

2
eC

eCn

2ðk2yc2=u2K1Þ

� �
; ð4:10Þ

where the first expression has been kindly supplied to us by Viktor Podolskiy
(2005, personal communication). For very large jkyj and very small loss, we have
that xze=2 and kzjkyj so the approximate expressions for the transfer functions
reduce to

tmðx; y; kyÞzeKjky jxCikyy C
iðe=2Þejky jð2dK2d0CxÞ

1Cðe=2Þ2e2jky jd
eikyy;

tsðx; y; kyÞz
ejky jðxK2d0ÞC iðe=2Þejky jð2dKxÞ

1Cðe=2Þ2e2jky jd
eikyy;

tcðx; y; kyÞz
ejky jð2dKxÞ

1Cðe=2Þ2e2jky jd
eikyy;

9>>>>>>>>>>=
>>>>>>>>>>;

ð4:11Þ

and in this limit

aðkyÞzKu½keðky=jkyjÞC iko�=2: ð4:12Þ
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The important observation is that these asymptotic expressions (with the
exception of the scale factor of u in equation (4.12)) are independent of the
frequency u. Since whether or not the integrals Aðx; yÞ and Cðx; yÞ converge or
diverge as 3 and n tend to zero is determined by the asymptotic form of the
transfer functions we conclude that the resonant regions at any frequency must
be located in the same areas as in the quasistatic limit, i.e. in two layers of equal
thickness, one centered at the front interface of the lens and the other centered at
the back interface. Furthermore the asymptotic expressions for the fields in the
resonant regions should be the same expressions as those in the quasistatic limit,
given by equations (4.6)–(4.9) of MNMP, and as a result the effective
polarizability should be the same as in the quasistatic case.

Let us now directly see this. We need to estimate integrals of the form

I ðbÞh
ðN
kc

dky
ekyb

1Cðe=2Þ2e2dky
Z

ðKkc

KN
dky

eKkyb

1Cðe=2Þ2eK2dky
; ð4:13Þ

for complex values of bZb0C ib00 in the limit as e/0. Clearly if b0 is negative we
have the estimate

jI ðbÞj%
ðN
kc

dkyjekybjZ
ðN
kc

dkye
kyb

0
ZKeb

0kc=b0; ð4:14Þ

and since kc is large the integral is negligibly small except when b0 is very small.
When b0O0 let the transition point kt be defined by ðe=2ÞedktZ1, i.e.
ktZKð1=dÞlogðe=2Þ, and let us change the variable of integration from ky to
vZkyKkt. Then the integral becomes

I ðbÞZ ektb
ðN
kcKkt

dv
evb

1Ce2dv
zektb

ðN
KN

dv
evb

1Ce2dv
Z ðe=2ÞKb=dQ0ðbÞ; ð4:15Þ

where Q0ðbÞ is obtained by setting fZ0 in the integral (2.42) giving

Q0ðbÞZ
p

2d sin½pb=ð2dÞ� : ð4:16Þ

In making the approximation (4.15) we have assumed that e is so incredibly small
that ktZKð1=dÞlogðe=2Þ[kc. From equation (4.15) we see that ðe=2ÞI ðbÞz
ðe=2ÞðdKbÞ=dQ0ðbÞ and a quantity like this is negligible in the limit e/0 when
b0!d.

Let Amðx; yÞ, Asðx; yÞ, Acðx; yÞ and Bmðx; yÞ, Bsðx; yÞ, Bcðx; yÞ denote the
values of Aðx; yÞ and Bðx; yÞ in front of the lens, in the slab, and behind the lens,
respectively. Using the approximations (4.11) and (4.12) we have

Amðx; yÞzK½uðkeC ikoÞ=2�iðe=2ÞI ð2dK2d0 CzÞ;
Bmðx; yÞz½uðkeKikoÞ=2�iðe=2ÞI ð2dK2d0 C�zÞ;
Asðx; yÞzK½uðke C ikoÞ=2�½I ðzK2d0ÞC iðe=2ÞI ð2dK�zÞ�;
Bsðx; yÞz½uðkeKikoÞ=2�½I ð�zK2d0ÞC iðe=2ÞI ð2dKzÞ�;
Acðx; yÞzK½uðkeC ikoÞ=2�I ð2dK�zÞ;
Bcðx; yÞz½uðkeKikoÞ=2�I ð2dKzÞ:

9>>>>>>>>>>=
>>>>>>>>>>;

ð4:17Þ
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From these expressions we see that for fixed ke and ko the field HZðx; yÞ is
resonant inside two possibly overlapping layers each of thickness 2ðdKd0Þ one
centered at the front interface of the slab and the other centered at the back
interface of the slab. Podolskiy et al. (2005) had already found that the fields are
very large in front of the lens outside the quasistatic regime, and we now see that
they become infinitely large as e/0.

Substituting the approximation (4.15) into (4.17) yields expressions for HZðx; yÞ
in the resonant regions. In each resonant region

HZðx; yÞzGðx; yÞhsuf½geðzÞKgeð�zÞ�=2C ½goðzÞCgoð�zÞ�=ð2iÞg; ð4:18Þ
where Gðx; yÞ is a piecewise harmonic function of x and y, and the prefactor s,
which is 1 inside the lens and K1 outside the lens, is introduced to make the
comparison with the quasistatic results easier. One finds that for pZe; o in the
resonant region 2d0Kd!x!d0 in front of the slab

gpðzÞZ gpmðzÞhKiqkpðe=2Þð2d0KdKzÞ=dQ0ð2dK2d0 CzÞ; ð4:19Þ
where qZ1 for pZe and qZK1 for pZo, while in the resonant region dCd0!
x!2d behind the slab

gpðzÞZ gpc ðzÞhkpðe=2ÞðzK2dÞ=dQ0ð2dKzÞ: ð4:20Þ
Within the slab, for x!minf2d0; dg, one has the resonant potential

gpðzÞZ gpoutðzÞhKikpðe=2ÞðzKdÞ=dQ0ð2dKzÞ; ð4:21Þ
which is associated with the front interface and for xOmaxfd; 2d0g one has the
resonant potential

gpðzÞZ gpinhqkpðe=2Þð2d0KzÞ=dQ0ðzK2d0Þ; ð4:22Þ
which is associated with the back interface, and when d0!d=2 for 2d0!x!d one
has the resonant potential gpðzÞZgpinðzÞCgpoutðzÞ where the resonant regions
overlap. Here the notations ‘in’ and ‘out’ are introduced to be consistent with the
notations in equations (4.8) and (4.9) of MNMP.

The above expressions for gpmðzÞ, gpc ðzÞ, gpoutðzÞ, and gpinðzÞ agree precisely with
the asymptotic expressions for f pinð�zÞ, �

f p
c
ð
�
zÞ

�
f p
out

ð
�
zÞ, and

�
f p
in
ð
�
zÞ, respectively, in

equations (4.6)–(4.9) of MNMP with the identification
�
zZd0Kz corresponding

to the different coordinate system used in that paper, with fZ0 corresponding to
the trajectory choice 3sZ1C ie chosen here, and with the signs of ke and ko

changed due to the 1808 rotation associated with the different coordinate system
(a dipole rotated by 1808 has opposite sign).

Also since ezs the formula (4.18) is consistent with the formula (2.7) in
MNMP for the magnetic field HZ once one replaces u withKu because the time
dependence in that paper has the factor eiut rather than eKiut. It is not surprising
that HZ becomes asymptotically harmonic in each resonant region as e/0 since
in this limit in the equation ðV2Cu2m3ÞHZZ0 satisfied by HZ the spatial
derivatives dominate because of the huge gradients in the field HZ .

From Maxwell’s equation V!HZKiu3E we see that in each resonant region

Exðx; yÞzEr
x ðx; yÞhKvV ðzÞ=vx; Eyðx; yÞzEr

y ðx; yÞhKvV ðzÞ=vy; ð4:23Þ
where

V ðzÞh ½geðzÞCgeð�zÞ�=2C ½goðzÞKgoð�zÞ�=ð2iÞ: ð4:24Þ
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In particular, in the resonant region in front of the lens, we have

Er
x ðx; yÞZK½ge0mðzÞCge0mð�zÞ�=2K½go0mðzÞKgo0mð�zÞ�=ð2iÞ;

Er
y ðx; yÞZKi½ge0mðzÞKge0mð�zÞ�=2K½go0mðzÞCgo0mð�zÞ�=2;

)
ð4:25Þ

where

gp0mðzÞZ dgpmðzÞ=dz Z iqkp½ð1=dÞlogðe=2Þ�ðe=2Þð2d0KdKzÞ=dQ0ð2dK2d0 CzÞ

Kiqkpðe=2Þð2d0KdKzÞ=dQ 0
0ð2dK2d0CzÞ

ziqkp½ð1=dÞlogðe=2Þ�ðe=2Þð2d0KdKzÞ=dQ0ð2dK2d0CzÞ;
ð4:26Þ

if which we have assumed jlogðe=2Þj[1. As can be seen from these equations, the
fields Er

x ðx; yÞ and Er
y ðx; yÞ have an approximately exponential decay away from

front of the slab face, i.e. they decay as ex=t with a decay length tZd=jlogðe=2Þj
which depends on e and d but which is independent of the frequency u and which is
roughly of the order of d if e is not too small. This is in contrast to most evanescent
fields which typically have a decay length which is of the order of the wavelength.

The Z-axis, which is where the dipole source is located, will be in the resonant
region when d0!d=2 and the resonant field ðEr

x ;E
r
y ÞZðEr

x ð0; 0Þ;Er
y ð0; 0ÞÞZ

ðKgemð0Þ;Kgo0mð0ÞÞ acting on it will be given by equation (2.6) with

cðdÞzcðe2=4ÞzKi½ð1=dÞlogðe=2Þ�ðe=2Þð2d0KdÞ=dQ0ð2dK2d0Þ; ð4:27Þ
which is in agreement with equation (2.45) when one sets dZe2=4 and fZ0 in
accordance with equation (2.2). Now suppose that the source being considered is an
electrically polarizable line source satisfying equation (2.7) in which ðE0

x ;E
0
y Þ is the

total field acting on the line source. Also suppose that there are other fixed sources,
possibly on both sides of the slab lens, that lie outside the cloaking region, i.e. which
are more than a distance d=2 away from the slab. We assume these fixed sources are
not perturbed if we remove the polarizable line and we let ðEx ;EyÞ denote the field at
the Z-axis due to these sources and the slab lens when the polarizable line source is
absent. Then it is easy to check that equations (2.7)–(2.26) remain valid, implying
that the polarizable line is cloaked at any frequency, not just in the quasistatic limit,
and for very small loss the effective polarizability will be

a�zKI=cðe2=4Þz idðe=2ÞðdK2d0Þ=d

jlogðe=2ÞjQ0ð2dK2d0Þ
I ; ð4:28Þ

which will be purely imaginary, with a small positive imaginary part, reflecting the
loss in the lens due to the localized resonance.

When, for simplicity, the polarizability is proportional to the identity tensor
aZaI , then equations (2.26), (4.19) and (4.27) imply

gemðzÞz
K½Ex CaK1ke0�dðe=2ÞKz=dQ0ð2dK2d0 CzÞ

logðe=2ÞQ0ð2dK2d0Þ
;

gomðzÞz
½KEy CaK1ko0 �dðe=2ÞKz=dQ0ð2dK2d0 CzÞ

logðe=2ÞQ0ð2dK2d0Þ
;

9>>>>>=
>>>>>;

ð4:29Þ
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which are resonant in the layer between the source and the slab. Similarly by
examining gemðzÞ, gpout and gpin we see that just as in the quasistatic case (see figure 6)
the resonance is confined to the two strips 0!x!2d0 and d!x!dC2d0 each of
thickness 2d0 and each with an interface of the slab as its midplane. The energy
estimates obtained in §4 of MNMP remain valid: as e/0 the total electrical energy
stored in the slab will scale as

½jkej2C jkoj2�e2ðd0=dÞK2jlog ejwe2ðd0=dÞK2jlog ej=jcðe2=4Þj2weK2d0=d=jlog ej; ð4:30Þ

which goes to infinity as e/0. Consequently, if the sources are started at some
definite time it will take an increasingly long time (but one which is apparently
relatively independent of the frequency u) for the energy in the resonant field to
build up to its equilibrium value and for the polarizable line to become cloaked. For
fixed but small e the transient time will be smallest when d0=d is small since then the
total electrical energy stored will be dramatically less. Also the cloaking effects will
be strongest when d0=d is small since then cðe2=4Þ is largest. Therefore, for cloaking
purposes, it is highly advantageous for the polarizable line to be close to the lens. The
electrical absorption in the lens will scale like e times the above expression, i.e. as
eðdK2d0Þ=d=jlog ej which goes to zero as e/0, and fastest when d0=d is small. By a
similar analysis, based on equations (4.18), (4.21), and (4.22), the total magnetic
field energy HZ within the lens scales like

u2½jkej2 C jkoj2�e2ðd0=dÞK2=jlog ejwu2e2ðd0=dÞK2=ðjlog ejjcðdÞj2Þwu2eK2d0=d=jlog ej3;
ð4:31Þ

which for sufficiently small ewill be much smaller than the electrical energy, but will
still go to infinity as e/0.
5. Cloaking in three dimensions

Since the asymptotic expressions (4.11) for the transfer functions (and the
analogous asymptotic expressions for the transfer functions of transverse electric
(TE) fields) are independent of the frequency u the three-dimensional cloaking
properties and the effective polarizability of a polarizable point dipole in front of
the Veselago lens at any fixed frequency should be the same as in the quasistatic
limit. Therefore, to simplify the analysis, let us restrict our attention to the
quasistatic case, which anyway is more easily experimentally tested since the
magnetic permeability can be positive and real everywhere.

We consider the cloaking of a polarizable point dipole in front of a slab of
relative permittivity 3s. The region in front of the slab has relative permittivity
3m and the region behind the slab has relative permittivity 3c. We assume that 3c
and 3m remain fixed and that 3s approachesK3m along a trajectory in the upper
half of the complex plane in such a way that d/0 but f remains fixed, where d
and f are given by equation (2.4). It proves convenient to use x1, x2 and x3 as our
coordinates, rather than x, y and Z, with the polarizable dipole being at xZ0 and
the slab faces being located at x1Zd0 and at x1Zd0Cd.
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By differentiating with respect to x1, x2, and x3 the plane wave expansion for
the potential associated with a suitably normalized point charge,

1

r
Z

1

2p

ðN
KN

ðN
KN

dk2dk3
eKkx1Ciðk2x2Ck3x3Þ

k
for x1O0; where kZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x2Ck3x3

p
;

ð5:1Þ
one obtains the plane wave expansion for a dipole

Ka$V½1=ð4prÞ�Z ða$xÞ=ð4pr3ÞZ
ðN
KN

ðN
KN

dk2dk3aðk2; k3ÞeKkx1Ciðk2x2Ck3x3Þ; ð5:2Þ

in which

a Z ða1; a2; a3Þ; aðk2; k3ÞZ ½a1Kia2ðk2=kÞKia3ðk3=kÞ�=ð8p2Þ; ð5:3Þ
and a1, a2 and a3 are (apart from a constant factor) the possibly complex
strengths of the dipole components in the x1, x2, and x3 directions.

By the superposition principle the potential V ðxÞ in the slab geometry is given
by the expression

V ðxÞZ
ðN
KN

ðN
KN

dk2dk3aðk2; k3Þtðx; k2; k3Þ; ð5:4Þ

where the transfer function tðx; k2; k3Þ represents the solution forVwith an incident
fieldV incZeKkx1Ciðk2x2Ck3x3Þ. Let tmðx; k2; k3Þ, tsðx; k2; k3Þ and tcðx; k2; k3Þ denote the
expressions for tðx; k2; k3Þ in front (to the left) of the slab lens, in the slab lens, and
behind (to the right) of the slab lens, respectively. These have the form

tmðx; k2; k3ÞZ eKkx1Ciðk2x2Ck3x3ÞCbmðkÞekx1Ciðk2x2Ck3x3Þ;

tsðx; k2; k3ÞZasðkÞeKkx1Ciðk2x2Ck3x3ÞCbsðkÞekx1Ciðk2x2Ck3x3Þ;

tcðx; k2; k3ÞZacðkÞeKkx1Ciðk2x2Ck3x3Þ:

9>>=
>>; ð5:5Þ

The requirements of continuity of the potential t and normal component of the
associated displacement field K3 vt=vx at the interfaces xZd0 and xZdCd0
determine the coefficients

bmðkÞZ
ðe2ðdKd0Þk=hscÞKdeifhsce

K2d0k

1Cdeife2dk
; asðkÞZ

23me
2dk

hscð3mK3sÞð1Cdeife2dkÞ
;

bsðkÞZ
23me

K2d0k

ð3mK3sÞð1Cdeife2dkÞ
; acðkÞZ

43s3me
2dk

ð3sK3cÞð3mK3sÞð1Cdeife2dkÞ
;

9>>>>=
>>>>;
ð5:6Þ

where hscZð3sK3cÞ=ð3sC3cÞ. Introducing the angle 4 such that k2Zk cos 4,
k3Zk sin 4, then the integral (5.4) becomes

V ðxÞZ
ð2p
0

d4að4Þ
ðN
0
dk kaðkÞekðKx1Cix2cos 4Cix3sin 4Þ CkbðkÞekðx1Cix2cos 4Cix3sin 4Þ;

ð5:7Þ
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in which aðkÞ equals 1, asðkÞ and acðkÞ, in front of the lens, in the lens, and behind
the lens, respectively, and similarly bðkÞ equals bmðkÞ, bsðkÞ and 0, in these
respective regions, and where

að4ÞZ ða1Kia2cos 4Kia3sin 4Þ=ð8p2Þ: ð5:8Þ
Let us define

JðbÞh
ðN
0
dk

kekb

1Cdeife2dk
; J 0ðbÞhdJðbÞ

db
Z

ðN
0
dk

kbekb

1Cdeife2dk
: ð5:9Þ

Then we have

VmðxÞZða$xÞ=4pr3C
ð2p
0
d4að4Þ½Jð2dK2d0Cx1Cix2cos4Cix3sin4Þ=hsc

KdeifhscJðK2d0Cx1Cix2cos4Cix3sin4Þ�;

VsðxÞZ
ð2p
0
d4að4Þ½Jð2dKx1Cix2cos4Cix3sin4Þ=hsc

CJðK2d0Cx1Cix2cos4Cix3sin4Þ�½23m=ð3mK3sÞ�;

VcðxÞZ
ð2p
0
d4að4ÞJð2dKx1Cix2cos4Cix3sin4Þð43s3mÞ=½ð3sK3cÞð3mK3sÞ�:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð5:10Þ
The electric field in front of the lens will be

EðxÞZKVVmZEdipðxÞCErðxÞ; ð5:11Þ
where Edip is the field due to the dipole alone,

EdipZKV½a$x=ð4pr3Þ�Z½3xða$xÞ=r2Ka�=ð4pr3Þ; ð5:12Þ
and ErðxÞ is the response field (which in the limit as d/0 can become the resonant
field) given by

ErðxÞZðEr
1 ;E

r
2 ;E

r
3 Þ

Z

ð2p
0
d4að4Þð1;icos4;i sin4Þ½KJ 0ð2dK2d0Cx1Cix2cos4Cix3sin4Þ=hsc

CdeifhscJ
0ðK2d0Cx1Cix2cos4Cix3sin4Þ�: ð5:13Þ

In particular at the origin xZ0, which is where the dipole source is located, the
integral is easily calculated and we have

Erð0ÞZcðdÞLa with LZ

1 0 0

0 1=2 0

0 0 1=2

0
B@

1
CA; ð5:14Þ

where

cðdÞZKJ 0ð2dK2d0Þ=ð4phscÞCdeifhscJ
0ðK2d0Þ=ð4pÞ: ð5:15Þ

So far no approximation has been made.
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Let us now examine JðbÞ for complex values of bZb0C ib00 in the limit as
d/0. If b0 is negative then we have the estimate

jJðbÞj%
ðN
0
dk kjekbj=c0 Z 1=ðc0b02Þ; where c0 Zmin

cR0
j1Cceifj; ð5:16Þ

and c0 is non-zero because f is never equal to p or Kp. So in this case JðbÞ
remains bounded as d/0, and

lim
d/0

JðbÞZ
ðN
0
dk lim

d/0

kekb

1Cdeife2dk
Z

ðN
0
dk kekb Z 1=b2: ð5:17Þ

It follows from equation (5.10) that when 3cs3m and a is fixed the potential
V ðxÞ is not resonant outside the layer 2dOx1O2ðd0KdÞ.

When b0O0 let the transition point kt be defined by de2dktZ1, i.e. by
ktZKð1=2dÞlog d, and let us change the variable of integration from k to
vZkKkt. Then the integral becomes

JðbÞZ
ðN
Kkt

dv
ðvCktÞeðvCktÞb

1Ce2dv
z

ðN
KN

dv
ðvCktÞeðvCktÞb

1Ce2dv
; ð5:18Þ

and this latter integral can be expressed in terms of the functions QðbÞ, given by
equation (2.42), and its derivative Q 0ðbÞZdQðbÞ=db:

ðN
KN

dv
ðvCktÞeðvCktÞb

1Ce2dv
Z

d

db

ðN
KN

dv
eðvCktÞb

1Ce2dv
Z

d

db
½ektbQðbÞ�

Z kte
ktbQðbÞCektbQ 0ðbÞ

zK½ð1=2dÞlog d�dKb=2dQðbÞ;

ð5:19Þ

where we have assumed QðbÞs0 and used the fact that kt is large for extremely
small d. Combining formulae gives

JðbÞ zK½ð1=2dÞlog d�dKb=2dQðbÞ;

J 0ðbÞZ dJðbÞ=dbz½ð1=2dÞlog d�2dKb=2dQðbÞK½ð1=2dÞlog d�dKb=2dQ 0ðbÞ

zðlog dÞ2dKb=2dQðbÞ=ð4d2Þ;

9>>>>=
>>>>;

ð5:20Þ

and so for d0!d when d is very small

cðdÞzKJ 0ð2dK2d0Þ=ð4phscÞzKðlog dÞ2dðd0KdÞ=dQð2dK2d0Þ=ð16pd2hscÞ: ð5:21Þ

If 3cs3m and d/0 then hsc/1=h and the above expression gives

cðdÞzKhðlog dÞ2dðd0KdÞ=dQð2dK2d0Þ=ð16pd2Þ; ð5:22Þ
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which implies the dipole becomes cloaked (jcðdÞj is large) for all d0!d. In the
case when 3cZ3m then hsczieKif=2=

ffiffiffi
d

p
for small d and we have

cðdÞzieif=2ðlog dÞ2dð2d0KdÞ=2dQð2dK2d0Þ=ð16pd2Þ; ð5:23Þ
which implies the dipole becomes cloaked for all d0!d=2.

To justify these cloaking claims suppose the dipole at xZ0 is a polarizable
‘molecule’ in the cloaking region. Let EðxÞ be the field without the polarizable
dipole present due to the following.

(i) Fields generated by fixed quasistatic sources lying outside the slab (on
either side of it) and which are outside the cloaking layer.

(ii) Fields generated by the slab due to its interaction with these fixed sources.

The field E0 acting on the polarizable molecule has two components:

E0 ZEð0ÞCErð0ÞZEð0ÞCcðdÞLa; ð5:24Þ
where Erð0Þ is the field due to the interaction of the polarizable molecule with
the slab. If a denotes the polarizability tensor of the molecule (which need not be
proportional to I ) and we allow for the fact that the polarizable line could have a
fixed dipole source term a0 then we have

a ZaE0Ca0 Za�Eð0ÞCa�; ð5:25Þ
where

a� Z ½aK1KcðdÞL�K1; a� Z ½IKcðdÞaL�K1a0; ð5:26Þ
are the ‘effective polarizability tensor’ and ‘effective source term’. Notice that the
‘effective polarizability tensor’ is anisotropic when aZaI .

It is interesting to examine what happens if the polarizable ‘molecule’ is
behind the slab. When 3cZ3m symmetry considerations imply that the molecule
will be cloaked if it is within a distance d=2 from the slab. When 3cs3m we will
see that a molecule behind the slab will never be cloaked. To establish the latter
it suffices to consider the situation where the molecule is in front of the lens and
3s tends to K3c. Then equation (2.1) implies 3szðK1K2deif=hÞ3c and
hsczheKif=d. It follows from equation (5.15) that

cðdÞz½KdeifJ 0ð2dK2d0Þ=hChJ 0ðK2d0Þ�=ð4pÞ: ð5:27Þ
Now as d/0 equation (5.16) implies J 0ðK2d0Þ remains bounded, while equation
(5.20) implies dJ 0ð2dK2d0Þ scales as ðlog dÞ2dd0=d. Therefore cðdÞ remains
bounded and no cloaking occurs.
6. Not everything is cloaked

Here we show that a layer of permittivity 32s3m is not cloaked when it is
inserted in the cloaking region. Let us consider the quasistatic transfer
function tðx; k2; k3Þ associated with a multilayered system with interfaces at
x1Zs1; s2; s3; s4, where 0!s1!s2!s3!s4 and in the region between sj and sjC1

the permittivity is 3jC1, while for x1!s1 it is 31 and for xOs4 it is 35. In the region
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occupied by the material with permittivity 3j , for jZ1; 2;.; 5 the transfer
function takes the form

tjðx; k2; k3ÞZaje
Kkx1Ciðk2x2Ck3x3ÞCbje

kx1Ciðk2x2Ck3x3Þ; ð6:1Þ

where a1Z1 and b5Z0. The requirements of continuity of the potential t and
normal component of the associated displacement fieldK3 vt=vx at the interface
x1Zsj imply

aj

bj

 !
ZM j

ajC1

bjC1

 !
; M j h

1

2

1C9j ð1K9jÞe2sjk

ð1K9jÞeK2sjk 1C9j

 !
; 9j h

3jC1

3j
:

ð6:2Þ
Thus we have

1

b1

 !
ZM

a5

0

 !
; where M Z

m1 m2

m3 m4

� �
ZM 1M 2M 3M 4; ð6:3Þ

which implies a5Z1=m1 and b1Zm3=m1. Now let us take

31 Z 33 Z 35 Z 3m Z 1; 34 Z 3s ZK1C ie; s3 Z d0; s4 Z dCd0; ð6:4Þ
where e is very small, so that the multilayered system consists of a layer of
permittivity 32 and thickness s2Ks1 in front of a superlens and not touching it.
Then we have

lim
e/0

M ZM 1M 2

eK2dk 0

0 e2dk

 !
;

and consequently a5 and b1 still depend on 32 even if the layer of permittivity 32
lies entirely inside the cloaking region: thus the presence of the layer can be
detected from outside the cloaking region.

On the basis of this example one might think that cloaking does not extend to
bodies of arbitrary shape. However, the example is very special in that the
potential in the region s2!x1!s0 when analytically extended into the region
x1%s2 has no singularities there, and in particular no singularities in the cloaking
region. By contrast, any object of finite extent lying entirely within the cloaking
region of the slab lens will have singularities in the analytic continuation of the
potential outside the object to the region within the object. In order for these
singularities not to create resonant regions with infinite energy in the limit e/0
it seems plausible that their effects should diminish as e/0. Therefore it may be
the case that any object of finite extent lying entirely within the cloaking region
of the slab lens will be cloaked in the limit e/0. It seems much more speculative
to suggest that an object lying half way in the cloaking region would be half
cloaked. However, if this were true it could provide an interesting way to image
the interior of an object: when one looked through the slab lens at the object one
would only see only the back half of it!

To experimentally detect cloaking it may be necessary to use lasers to provide
coherent radiation. If ordinary electromagnetic radiation were used then by the
time the resonant field responsible for the cloaking reached an equilibrium value
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the radiation acting on the polarizable ‘molecule’ could be out of coherence with
the resonant field acting on it. This might not be the case if the ‘molecule’ is
sufficiently close to the boundary since then the resonant field reaches its
equilibrium value relatively quickly. Also we have assumed that the ‘molecule’ is
a stationary object, and therefore it seems possible that thermal effects could
destroy cloaking. To minimize these effects it may be necessary to reduce the
temperature as much as possible. Moreover, it seems unlikely that cloaking could
be achieved over a broad range of frequencies since if 3szK1 at one frequency
and we assume the loss terms are extremely small, the positivity of dðu3sÞ=du
(which enters the Brillouin formula for the energy: see §80 of Landau & Lifshitz
(1960)) implies that d3s=duO1=u, so there is necessarily a significant change of
the permittivity 3s with frequency.

It should also be cautioned that we have not investigated the effects of
stability. If the time harmonic solution assumed here is unstable it seems unlikely
that cloaking could be experimentally observed.
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