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Green leaf volatile sensory calcium
transduction in Arabidopsis

Yuri Aratani1,5, Takuya Uemura1,5, Takuma Hagihara 1, Kenji Matsui 2 &
Masatsugu Toyota 1,3,4

Plants perceive volatile organic compounds (VOCs) released by mechanically-
or herbivore-damaged neighboring plants and induce various defense
responses. Such interplant communication protects plants from environ-
mental threats. However, the spatiotemporal dynamics of VOC sensory
transduction in plants remain largely unknown. Using a wide-field real-time
imaging method, we visualize an increase in cytosolic Ca2+ concentration
([Ca2+]cyt) in Arabidopsis leaves following exposure to VOCs emitted by injured
plants. We identify two green leaf volatiles (GLVs), (Z)-3-hexenal (Z-3-HAL) and
(E)-2-hexenal (E-2-HAL), which increase [Ca2+]cyt in Arabidopsis. These volatiles
trigger the expression of biotic and abiotic stress-responsive genes in a Ca2+-
dependent manner. Tissue-specific high-resolution Ca2+ imaging and stomatal
mutant analysis reveal that [Ca2+]cyt increases instantly in guard cells and
subsequently inmesophyll cells upon Z-3-HAL exposure. These results suggest
that GLVs in the atmosphere are rapidly taken up by the inner tissues via
stomata, leading to [Ca2+]cyt increases and subsequent defense responses in
Arabidopsis leaves.

Plants emit an array of volatile organic compounds (VOCs), including
green leaf volatiles (GLVs), terpenoids, and amino acid derivatives, in
response to wounding and herbivore attack1,2. These VOCs exert mul-
tiple protective effects, such as directly repelling herbivores and
attracting natural enemies of the hervibores3–5. Neighboring intact
plants perceive these VOCs as danger cues to trigger defense
responses6 or prime themselves to respond to upcoming stresses in a
timely manner7. Therefore, these VOCs serve as interplant airborne
signals. Such interplant interaction mediated by volatile cues is known
as plant–plant communication or plant eavesdropping1. VOC percep-
tion in plants was first reported in the early 1980s. Two individual
groups demonstrated that Sitka willow (Salix sitchensis) and poplar
(Populus x euramericana) trees exhibited increased antiherbivore
properties when grown near damaged plants8,9. Such VOC-mediated
interplant signaling has been reported in more than 30 plant species,
including limabean6, tobacco10, tomato11, sagebrush12, andArabidopsis13.

GLVs, comprising six-carbon (C6) compounds, including alcohols,
aldehydes, and esters, are among the most rapidly and abundantly
produced VOCs in the plant kingdom, being generated within seconds
after wounding14. Upon mechanical damage, GLV biosynthesis is
immediately initiated by a lipoxygenase (LOX)-mediated dioxygenase
reaction on fatty acids to yield fatty acid/lipid hydroperoxides. These
derivatives are cleaved to form (Z)-3-hexenal (Z-3-HAL), a C6 volatile
aldehyde, by hydroperoxide lyase (HPL), a key enzyme for GLV
formation14. Arabidopsis accession Col-0 exhibits low GLV production
because of a 10-bp deletion in HPL15. Z-3-HAL can be isomerized to (E)-
2-hexenal (E-2-HAL) by an isomerase16,17. Alternatively, Z-3-HAL is
quickly reduced to the C6 alcohol (Z)-3-hexenol (Z-3-HOL), which can
be further converted to (Z)-3-hexenyl acetate (Z-3-HAC) by an acetyl
transferase. GLVs elicit a wide range of defense signals in plants. GLV
exposure in plants induces the accumulation of the stress-related
phytohormone jasmonic acid (JA)7 and expression of JA-dependent
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defense genes18 or plants prime themselves for rapid response to
subsequent herbivory damage19. GLVs also trigger the induction of
abiotic stress-related defense genes, including heat- and oxidative
stress-responsive genes20. Indeed, treating Arabidopsis with GLVs
induces enhanced heat stress tolerance21.

Plant VOC-dependent defense responses are initiated following
VOC entry into inner tissues22. Exogenous VOC uptake by plants is
facilitated during the light period, in which stomata are opened and
CO2 exchange is enhanced23. Furthermore, changes in the uptake rate
of aldehydes and ketones can be coupled with those of stomatal
conductance24, suggesting that stomata play a critical role in VOC
perception. In tobacco, TOPLESS-like protein, a transcriptional cor-
epressor for JA signaling, was revealed to interact with the sesqui-
terpene β-caryophyllene25. Upon binding to β-caryophyllene, the
TOPLESS-like protein-mediated transcriptional suppression of
defense-related genes is inhibited, thereby accelerating defense gene
expression25. However, the molecular mechanisms underlying the
perception of VOCs, especially GLVs, are poorly understood.

Cytosolic Ca2+ plays crucial roles in a wide array of plant stress
responses26,27. Downstream signaling activation systems via cytosolic
calcium ion concentration ([Ca2+]cyt) increases have been extensively
studied, including the identification of critical components linking
stress perception to the formation of Ca2+ signals, as well as the
mechanism of Ca2+ signal implementation28. Using an electro-
physiological technique and a Ca2+-sensitive fluorescent dye, mem-
branepotential depolarization and [Ca2+]cyt increases after exposure to
several GLVs were observed in tomato leaves29. In addition, [Ca2+]cyt
increases were detected in detached Arabidopsis leaves upon VOC
exposure using a Ca2+-sensitive luminescent protein30. These findings
suggest that Ca2+ signaling is involved in an early process leading to
downstream defense responses. However, little is known about the
spatiotemporal dynamics of GLV sensory transduction because of
technical limitations in real-time monitoring of GLV-induced Ca2+ sig-
nals in intact living plants.

In this study, we observed that a plant-wide Ca2+ signature rapidly
occurs in response to exposure to VOCs released by damaged plants
using transgenic Arabidopsis expressing a green fluorescent protein-
based Ca2+ biosensor and a wide-field real-time fluorescence micro-
scope. We found that Z-3-HAL and E-2-HAL elicited rapid increases in
[Ca2+]cyt in Arabidopsis leaves, in which defense responses were acti-
vated. Tissue-specific high-resolution Ca2+ imaging and stomatal
mutant analysis also clarified the spatiotemporal dynamics of VOC
sensing and signal transduction networks in plants.

Results
VOCs released from plants trigger [Ca2+]cyt increases in
Arabidopsis
Using transgenic Arabidopsis expressing the Ca2+ biosensor GCaMP331,
we observed [Ca2+]cyt changes in intact plants following exposure to
VOCs emitted by damaged plants in real time. We used Arabidopsis
accessionNo-0 and tomato as emitter plants because they emit various
VOCs, including GLVs, in response to wounding29,32,33. First, we mon-
itored [Ca2+]cyt increases in Arabidopsis (receiver) following exposure
to VOCs emitted from Arabidopsis plants (source of VOCs) fed on by
the commoncutworm (Spodoptera litura; Fig. 1a, b and Supplementary
Movie 1). This Ca2+ signal was rapidly transmitted to all parts of the
plant within 20min (Fig. 1b, c). Similar results were obtained when
receiver Arabidopsis was exposed to VOCs released by tomato leaves
(source of VOCs) consumed by S. litura (Fig. 1b, c and Supplementary
Movie 2). Further, upon placing either homogenized Arabidopsis or
tomato leaves (Source of VOCs) near receiver Arabidopsis (Fig. 2a),
[Ca2+]cyt increases were observed in several leaves (Fig. 2b, Supple-
mentaryMovies 3 and 4). In a time-course analysis of [Ca2+]cyt changes
in leaf 1 (L1), we found that VOCs emitted by homogenized tomato
leaves caused larger signal changes than those emitted by Arabidopsis

(Fig. 2c, d). These results suggest that VOCs emitted by damaged
Arabidopsis and tomato plants caused [Ca2+]cyt changes in neighboring
intact Arabidopsis plants.

Z-3-HAL and E-2-HAL induce [Ca2+]cyt increases in Arabidopsis
To identify the VOCs responsible for triggering [Ca2+]cyt changes in
Arabidopsis, we examined five GLVs [Z-3-HAL, E-2-HAL, n-hexanal
(n-HAL), Z-3-HOL, and Z-3-HAC], three terpenes (α-pinene, β-pinene,
and β-caryophyllene), andmethyl jasmonate (MeJA) because they have
been reported to induce defense responses in receiver plants2,11,29. We
measured time-course changes in [Ca2+]cyt in three regions, i.e., “tip,”
“base,” and the midpoint between them (“mid”), in L1 of Arabidopsis
after each VOC solution was placed in close proximity (Fig. 3a). Of
these, Z-3-HAL immediately increased [Ca2+]cyt at the tip within 30 s
(Fig. 3b, c and Supplementary Movie 5). Subsequently, the signal was
propagated to the mid and base regions within 1 and 2min, respec-
tively, and it persisted for over 15min. Although exposing Arabidopsis
to E-2-HAL also caused a [Ca2+]cyt increase, the increasewasweaker and
slower than that induced by Z-3-HAL (Fig. 3b–d and Supplementary
Movie 6). Bymeasuring the velocities of Z-3-HAL- and E-2-HAL-induced
Ca2+ transmission, we revealed that the signal transmission induced by
Z-3-HAL (0.24–0.30mm/s; N = 10) was faster than that induced by E-2-
HAL (0.01–0.02mm/s; N = 10; Fig. 3e). In contrast, no [Ca2+]cyt increa-
ses were observed in leaves exposed to other VOCs (Fig. 3f). These
results indicate that Z-3-HAL and E-2-HAL are key triggers of rapid
[Ca2+]cyt increases in Arabidopsis. Based on these observations, we
focused on Z-3-HAL and E-2-HAL in subsequent analyses.

To confirm that GLVs induce [Ca2+]cyt increases upon exposure to
VOCs emitted by homogenized leaves (Fig. 2), we monitored [Ca2+]cyt
changes in leaves following exposure to VOCs emitted by homo-
genized Arabidopsis that harbors inactive HPL and emits little GLVs34.
VOCs emitted by homogenized Arabidopsis carrying Col-0-derived
HPL (hpl1 mutant) did not induce Ca2+ signals in receiver leaves (Sup-
plementary Fig. 1). Using gas chromatography-mass spectrometry (GC-
MS) and MonoTrap RGPS TD, which is a high-quality adsorbent, we
further analyzed the VOC components rapidly produced by homo-
genized tomato and Arabidopsis leaves. Tomato leaves emitted sig-
nificantly higher amounts of Z-3-HAL and E-2-HAL than wild-type (WT)
Arabidopsis leaves upon homogenization (Supplementary Fig. 2).
Moreover, the levels of these compounds emitted by homogenized
hpl1 leaves were remarkably low (<25% of that emitted by WT leaves;
Supplementary Fig. 2), consistent with the results of Ca2+ signature
levels. Altogether, these results suggest that interplant airborne sig-
naling that induces [Ca2+]cyt changes is dependent on HPL-mediated
GLV formation in Arabidopsis.

Z-3-HAL and E-2-HAL elicit electrical signals and defense gene
expression
Because changes in the membrane potential upon GLV exposure were
observed in tomato leaves29, we simultaneously recorded the changes
in [Ca2+]cyt and the leaf surface potential uponC6 aldehyde exposure in
Arabidopsis. Z-3-HAL and E-2-HAL exposure in Arabidopsis leaves
resulted in rapid changes in the leaf surface potential, which is spa-
tiotemporally coupled with changes in [Ca2+]cyt (Fig. 4a–d). Interest-
ingly, detailed analysis of the timing of the initial detectable signal
changes revealed that the surface potential change significantly pre-
ceded the onset of the Ca2+ signal in the plant GLV sensory transduc-
tion system (Fig. 4e).

We next examined the accumulation of defense-related gene
transcripts after Z-3-HAL and E-2-HAL exposure. Expression of the heat
and oxidative stress response marker genes HSP90.1 and ZAT12
increased in leaves after 30 and60minofZ-3-HALor E-2-HAL exposure
(Fig. 4f). Similarly, JA-related genes, such as OPR3 and JAZ7, were
upregulated by these C6 aldehydes (Fig. 4f). Furthermore, we used a
pharmacological approach to assess the role of GLV-induced [Ca2+]cyt
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Fig. 1 | Exposure toVOCs emitted by leaves consumedby theherbivore S. litura
induces [Ca2+]cyt increases in receiver Arabidopsis leaves. a The experimental
setup for Ca2+ imaging in Arabidopsis (receiver) upon exposure to VOCs
emitted by leaves consumed by S. litura larvae is schematically illustrated.
Prior to the experiment, the receiver Arabidopsis in a plastic dish was accli-
mated by directing airflow from an empty plastic bottle for 10min, allowing
its adaptation to the experimental conditions. Subsequently, receiver Ara-
bidopsis was exposed to VOCs emitted from a plastic bottle containing S.
litura larvae and either Arabidopsis or tomato leaves (source of VOCs) by

connecting the bottle and manipulating the valve. The black arrows indicate
the direction of airflow. b Changes in [Ca2+]cyt (yellow arrowheads) in Ara-
bidopsis expressing GCaMP3 in response to VOCs released from Arabidopsis
(upper) and tomato (Solanum lycopersicum cv. Minicarol) leaves (below)
consumed by S. litura larvae. White dashed lines indicate the position of the
tip of the tube from where the airflow emerges. Scale bar, 5 mm.
c Quantification of [Ca2+]cyt signatures in leaf 1 (L1). Error bars, mean ±
standard error (SE). N = 4 and 5 biologically independent samples for A.
thaliana and S. lycopersicum, respectively.
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Fig. 2 | Exposure to VOCs emitted by homogenized leaves induces [Ca2+]cyt
increases in receiver Arabidopsis leaves. a The experimental setup for Ca2+ ima-
ging in Arabidopsis (receiver) upon exposure to VOCs from homogenized Arabi-
dopsisor tomato leaves (sourceofVOCs) is schematically illustrated. In total, 10 gof
Arabidopsis leaves or 5 g of tomato leaves was homogenized with liquid nitrogen
using a mortar and pestle. The resulting homogenized tissues were immediately
transferred to 1.5-mL plastic tubes. Subsequently, Ca2+ imaging was initiated by
placing the tubes in close proximity to receiver Arabidopsis. b Changes in [Ca2+]cyt
(yellow arrowheads) in Arabidopsis expressing GCaMP3 after exposure to VOCs

emitted by homogenized Arabidopsis (upper) and tomato (Solanum lycopersicum
cv. Micro-Tom) leaves (lower). Scale bar, 5mm. c Quantification of [Ca2+]cyt sig-
natures in L1. Error bars, mean± SE. N = 5 and 3 biologically independent samples
for A. thaliana and S. lycopersicum, respectively. d Comparison of the maximal
[Ca2+]cyt changes detected in receiver Arabidopsis upon exposure to VOCs emitted
by homogenized Arabidopsis (A.t) or tomato (S.l) leaves. An asterisk denotes sta-
tistically significant differences based on two-tailed Student’s t-test (*, P <0.05).
Error bars, mean± SE. N = 5 and 3 biologically independent samples for A. thaliana
and S. lycopersicum, respectively.
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increases in triggering transcript accumulation. Pretreating Arabi-
dopsis seedlingswith aCa2+ channel blocker (LaCl3) or calciumchelator
(EGTA) prevented both [Ca2+]cyt increases andmarker gene expression
(Supplementary Fig. 3). Furthermore, we conducted thewashout assay
to evaluate the reversibility of the Ca2+ signals in Arabidopsis, allowing
the assessment of any potential negative effects of these pharmaco-
logical reagents on plant cell viability. After an additional incubation

period of 24h with a liquid medium lacking LaCl3 and EGTA, we
observed approximately 65–95% recovery of the Ca2+ signal at 500 s
compared with that in Mock-pretreated Arabidopsis (Supplementary
Fig. 3a, c). Therefore, the GLV response in plants pretreated with the
reagents is reversible, pharmacologically suggesting that these che-
micals can block Ca2+ signals without drastically affecting the plant
cells themselves. Altogether, these results indicate that [Ca2+]cyt
increases are required for the induction of transcriptional changes
related to defense responses in plants.

Z-3-HAL induces local Ca2+ signals in a concentration-dependent
manner
To gain further insights into the physiological properties of C6 alde-
hydes as signaling molecules, we examined the concentration depen-
dency of [Ca2+]cyt increases induced by Z-3-HAL. Upon exposure to
lower Z-3-HAL concentrations, concentration-dependent decreases of
[Ca2+]cyt responses were observed (Fig. 5a, b, and Supplementary
Fig. 4). We quantified the amount of Z-3-HAL released from Z-3-HAL
solution under this experimental condition. Z-3-HAL was adsorbed by
adsorbents placed at a distance of 5mm from the 0.03M solution. Z-3-
HAL adsorption reached saturation within 1min (Supplementary
Fig. 5), and 3.85 nmol Z-3-HALwas adsorbed over 30 s. Considering the
volume of the adsorbents (58 μL), it can be estimated that the local
concentration of Z-3-HAL at a distance of 5mm from the 0.03M
solution was 0.07mM. Based on this finding, L1 in receiver Arabidopsis
was exposed to approximately 6.42–385 nmol (0.1–6.7mM) Z-3-HAL
over 30 s following exposure to 0.05–3.0M Z-3-HAL solutions (Fig. 5a).

As Ca2+ has been proposed to act as a long-distance signal tra-
veling to systemic undamaged parts to activate defense responses at a
whole-plant level inother stress responses31,35, we investigatedwhether
Z-3-HAL triggers long-distance intracellular Ca2+ signal propagation. L1
was spatially isolated from other parts of the plant (Fig. 5c), ensuring
that only L1 was exposed to Z-3-HAL. Exposure of L1 to Z-3-HAL caused
a local [Ca2+]cyt increase; however, Ca

2+ signal propagation to distal
unstimulated parts (L3) was not observed (Fig. 5d–f and Supplemen-
tary Movie 7). These results indicate that Z-3-HAL elicits [Ca2+]cyt
increases locally following direct exposure but not long-distance Ca2+

signals traveling toward systemic leaves.

GLVs are rapidly perceived by guard and mesophyll cells
We generated Arabidopsis expressing GCaMP3 driven by tissue-specific
promoters, such as GC1, RBCS1A, SULTR2;2, and ATML1, to selectively
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express GCaMP3 in guard36, mesophyll37, vasculature38, and epidermal
cells39, respectively. These transgenic lines enable the visualization of
[Ca2+]cyt changes specifically occurring in each tissue, thereby aiding in
the understanding of the spatiotemporal patterns of GLV-induced
responses. Upon Z-3-HAL exposure, [Ca2+]cyt increased rapidly in the tip
region of pGC1::GCaMP3 and pRBCS1A::GCaMP3 leaves within 40 s,
whereas it increased gradually in pSULTR2;2::GCaMP3 and

pATML1::GCaMP3 leaves (Fig. 6 and Supplementary Movies 8–11).
Quantitative analysis of the timing of signal increases revealed that
[Ca2+]cyt first increased in pGC1::GCaMP3 and pRBCS1A::GCaMP3 within
1min (Fig. 6f, g). Interestingly, pSULTR2;2::GCaMP3 and pATML1::G-
CaMP3 responded slowly to Z-3-HAL (Fig. 6f, g).

To better understand GLV propagation pathways, we observed
[Ca2+]cyt changes at the cellular level using an upright confocal laser
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scanning microscope (Fig. 7a–c). A rapid [Ca2+]cyt increase was first
observed in guard cells (pGC1::GCaMP3) within 1min of Z-3-HAL
exposure (Fig. 7d, g, h, and Supplementary Movie 12). An increase in
[Ca2+]cyt was detected earlier in mesophyll cells (pRBCS1A::GCaMP3)
than in epidermal cells (pATML1::GCaMP3) (Fig. 7e–h and Supple-
mentary Movies 13–14). These observations were consistent with
the results obtained using Arabidopsis expressing GCaMP3 driven by
the 35S promoter (Supplementary Fig. 6 andMovie 15). Based on these
findings, we hypothesized that plant GLV sensory transduction could
be initiated by GLV flux into inner tissues via stomata, resulting in
subsequent defense signaling activation.

Stomata play a critical role in rapid Z-3-HAL perception
To examine the function of stomata in rapidGLV sensory transduction,
we used the phytohormone abscisic acid (ABA) to induce stomatal
closure40, as well as stomatal mutants exhibiting abnormal stomatal
movement phenotypes41–43. Pretreatment of Arabidopsis WT leaves
with ABA resulted in stomatal closure (Supplementary Fig. 7), and the
Z-3-HAL-induced increase in [Ca2+]cyt was delayed compared with that
in leaves pretreated with a stomatal opening buffer solution (Mock,
Fig. 8). Loss-of-function mutants of SLOW ANION CHANNEL-
ASSOCIATED 1 (slac1) and OPEN STOMATA 1 (ost1) exhibit impaired
stomatal closure in the presenceof ABA41,42 (Supplementary Fig. 7).Z-3-
HAL-induced [Ca2+]cyt signatures in ABA-treated slac1-2 and ost1-3
mutants expressing GCaMP3 driven by the 35S promoter were similar
to those in Mock-treated leaves (Fig. 8). Moreover, a critical role of
stomata in rapid Z-3-HAL-induced electrical signaling was confirmed
via the time-course analysis of leaf surface potential changes using
ABA-pretreated leaves (Supplementary Fig. 8). These results support
our hypothesis that GLV uptake from the atmosphere into tissues via
stomata is the main pathway of rapid GLV sensory transduction in
plants, which in turn activates plant defense responses.

Discussion
We visualized Ca2+ signal transduction in intact Arabidopsis plants
exposed to VOCs emitted by mechanically- and herbivore-damaged
plants (Figs. 1 and 2) and found that Z-3-HAL and E-2-HAL function as
airborne signaling molecules triggering [Ca2+]cyt increases, electrical
signals, and transcriptional changes in Arabidopsis leaves (Figs. 3, 4).
Since VOC components other than these twoC6 aldehydeswere unable
to elicit [Ca2+]cyt changes in Arabidopsis (Fig. 3f), the aldehydemoiety in
their structures appeared necessary for activating [Ca2+]cyt-based
defense signaling. E-2-HAL containing an α,β-unsaturated carbonyl
moiety is a reactive electrophile species that causes cell damage
because of its ability to form adducts with nucleophiles44. Z-3-HAL,
which has a β,γ-unsaturated carbonyl group, exerts physiological
effects on various organisms14,20. Surprisingly, n-HAL and Z-3-HAC failed
to trigger [Ca2+]cyt increases (Fig. 3f), whereas Ca

2+ response to Z-3-HAC
exposure was previously reported in tomatoes29. These findings sug-
gest that plants possess species-specific sophisticated VOC recognition
systems in addition to a mechanism capable of recognizing structural
differences among GLV components (such as specialized receptor
proteins)12,45. Indeed, some volatile-specific receptors in plants have
been isolated, including those for ethylene46 and β-caryophyllene25.

In addition to the volatile-specific perception system, VOC uptake
pathways involving metabolic processes have been proposed to act as
other primary pathways for downstream VOC signaling activation22.
Z-3-HOL accumulated in tomato cells is glycosylated, leading to
enhanced resistance against S. litura via the insecticidal effects47.
However, considering that neither Z-3-HOL nor β-caryophyllene trig-
gered [Ca2+]cyt changes (Fig. 3f), plants might be equipped with spe-
cialized VOC perception systems that activate downstream signaling
independently at different levels (for example, Ca2+ signals, transcrip-
tional changes, and metabolism).

The C6 aldehyde group can prime/induce plant defense respon-
ses to abiotic stresses20. For example, heat and photooxidative stresses
elicit enhanced E-2-HAL production in Arabidopsis, tomatoes21,48, and
tobacco49. GLV-exposed Arabidopsis seedlings exhibit enhanced heat
tolerance21. In this study, oxidative stress- and heat-responsive genes
were upregulated upon GLV exposure in a Ca2+-dependent manner
(Fig. 4f and Supplementary Fig. 3b). Although the detailed molecular
mechanism underlying stress-related signaling activation upon GLV
exposure remains unclear, [Ca2+]cyt increases could mediate both
stress-responsive gene expression31,50 and immediate GLV formation
via Ca2+ binding to the PLAT domain in LOX, a key enzyme for GLV
biosynthesis51. Different experimental approaches, such as tran-
scriptome analysis, could provide new insights into the mechanism
underlying enhanced stress tolerance through GLV-induced Ca2+

signals.
The local concentration of Z-3-HAL at a distance of 5mm from the

3.0M solution, which consistently induced stable [Ca2+]cyt increases,
was estimated at 6.7mM (Supplementary Fig. 5). Similarly, 381 nmol Z-
3-HAL was detected within 10min of exposure to 0.5 g homogenized
Arabidopsis leaf tissues (Supplementary Fig. 2), indicating that receiver
Arabidopsis is exposed to approximately 6.6mM Z-3-HAL in 30 s.
Although the homogenization of Arabidopsis leaf tissues might be
unrealistic in nature, these estimations indicate that the concentration
of Z-3-HAL solution corresponds to that emitted by plants and that the
experimental conditions used in this study are relevant to the potential
exposure or emission of Z-3-HAL in a natural context.

Plants possess the ability to efficiently absorb a wide range of
surrounding atmospheric VOCs and accumulate them into their tis-
sues. For example, tomato can absorb a significant amount of atmo-
spheric methacrolein, with estimates ranging from 33% to 41% of the
total methacrolein content present in the air52. The minimum amount
of Z-3-HAL required to induce detectable Ca2+ signals was 0.1M
(Fig. 5a). Considering that approximately 12.8 nmol Z-3-HAL was
adsorbed by the adsorbents within 30 s of exposure to 0.1M Z-3-HAL,
Arabidopsis accumulates approximately 4.2 nmol Z-3-HAL at 33%of the
VOC-adsorbing capacity of the adsorbent. Based on the previous
calculation34, a single injury (7.5 μg, 0.05 mm2) produces 12.9 and 2.9
pmol Z-3-HAL in tomatoes and Arabidopsis, respectively (for detail, see
Supplementary Fig. 2 and Methods). If these estimations are accurate,
the Z-3-HAL emitted following a single injury is unlikely to induce
detectable Ca2+ signals. To induce the release of 12.8 nmolZ-3-HAL (the
accumulation of 4.2 nmol Z-3-HAL in Arabidopsis leaves) and Ca2+ sig-
nals under our experimental conditions, approximately 148.8 (992.3
mm2) and 662.1 (4409.0 mm2) mg of leaves need to be injured in

Fig. 4 | Z-3-HAL and E-2-HAL trigger the leaf surface potential changes and
defense-related gene expression in Arabidopsis. a, b Simultaneous recording of
changes in the leaf surface potential and [Ca2+]cyt (yellow arrowheads) in the tip
region of L1 after the application of Z-3-HAL (a) and E-2-HAL (b) solutions 5mm
from the tip of L1. The chemical solutionwas applied in a plastic tube indicated by a
white dashed line (0 s). The white arrow indicates the recording electrode. Scale
bar, 2.5mm. c, dQuantification of the leaf surface potential and [Ca2+]cyt signatures
induced by Z-3-HAL (c) and E-2-HAL (d). An enlarged graph is presented on the
right. Error bars, mean ± SE. N = 10 biologically independent samples.
e Comparison of the time points at which the change in the leaf surface potential

and Ca2+ signal was detected. The change in signal used to measure velocity was
defined as an increase or a decrease to above 2 standard deviation (SD) of the pre-
stimulation levels. An asterisk denotes a significant difference based on two-tailed
Student’s t-test (*, P <0.05). Error bars, mean± SE. N = 10 replicates per line.
f Transcript levels ofHSP90.1, ZAT12, OPR3, and JAZ7 in L1 of Arabidopsis at 30 and
60min after treatment with Z-3-HAL, E-2-HAL, or DMSO (Mock). ACT8 was used as
an internal reference for standardization. Error bars, mean± SE. N = 5. Different
letters denote significant differences based on one-way ANOVA followed by
Bonferroni’s post hoc test (P <0.05).
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tomatoes and Arabidopsis, respectively. This size of agricultural
damage might be realistic in nature53.

Although it is unlikely that plants are continuously exposed to
high GLV concentrations (e.g., 3.0M Z-3-HAL) under natural

conditions, it should be noted that GLVs do not easily diffuse because
of their high molecular weight, which may lead to high local GLV
concentrations around damaged plants54,55. Considering these find-
ings, thepossibility thatplant cells and tissues are temporarily exposed
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to high GLV concentrations under specific circumstances (e.g., when
receiver plants are in close proximity to disrupted plants capable of
emitting numerous GLVs, including Vigna radiata and Momordica
charantia56, in response to herbivory innature) cannot bedismissed. In
fact, we detectedCa2+ signals in response to VOCs released fromplants
consumedby herbivores (Fig. 1). To further clarify this phenomenon, it
would be beneficial to employ advanced technologies, such as the real-
time detection of atmospheric VOC concentrations, and precisely
determine the VOC adsorption capacity and efficiency of plants57.

Using real-time Ca2+ imaging combined with pharmacological and
genetic approaches, we proposed a model for the spatiotemporal
propagation pathways of VOCs in plants (Fig. 9) where stomata play a
critical role in perceiving VOC cues. Some studies support our idea of
the importance of stomata for VOC uptake, especially for the
absorption of atmospheric gases such as CO2, and air pollutants23,58.

For example, VOC uptake by plant tissues is efficiently facilitatedwhen
stomata are opened23. Aldehyde compounds can also be absorbed into
the leaf interior via stomata58. Conversely, the delayed Ca2+ signals in
epidermal cells could be explained by the presence of the cuticle,
which functions as a permeability barrier. This idea is supported by a
previous finding that O3 deposition in cuticles was negligibly small59.
Taken together, it is possible that stomata serve as a plant gateway
mediating rapid VOC entry into interspaces in tissues.

Two glutamate receptor-like genes (GLRs) that are localized in
phloem and xylem contact cells in the vasculature are activated in
response to wounds, resulting in the propagation of Ca2+ and electrical
signals from the wound site to distant organs31,60. Although Z-3-HAL-
induced [Ca2+]cyt increases were detected in the vasculature tissue
(Fig. 6c, e), no Ca2+ signal propagation toward systemic leaves was
observed (Fig. 5d). Given that the amplitude and propagation rate of
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thewound-triggered systemic signals dependon the type and intensity
of the stimuli61, and the necessity of damaging the main vein of the
leaf62, GLVs might not activate the key elements required for long-
distance signal transmission, such asGLRs, or the local responsemight
not reach the threshold required to allow the Ca2+/electrical signals to
move out of the local leaf. Interestingly, changes in the leaf surface
potential preceded changes in [Ca2+]cyt uponGLV exposure (Fig. 4e), as
systemic electrical signals preceded Ca2+ signals upon wounding63,64.
Membrane depolarization could be induced by the activation of ion
channels, such as Cl−-permeable, ROS-sensitive, or ligand-gated chan-
nels, followed by [Ca2+]cyt increases via Ca2+ influx and efflux through
plasma- and endo-membranes, respectively63,64.

The wide-field real-time imaging approach used in this study
provided physiological insights with significantly higher resolution
using intact Arabidopsis, revealing the details of Ca2+ signals in
response toGLVs in amorecomprehensivemanner. Thismethodology
allowed the assessment of spatial and temporal aspects of GLV per-
ception pathways at the cellular level. Additionally, by integrating real-
time imaging with other techniques, we achieved a deeper under-
standing of the comprehensive orchestration of GLV responses,

including Ca2+ signals and other signaling mechanisms such as elec-
trical signals. This approach can be further extended to investigate
VOC signaling networks across plant taxa using mutants that are
defective in theputative elements of VOC responses. Furthermore, this
Ca2+ imaging method can serve as a robust tool for investigating the
molecular basis of airborne plant signaling, both within (e.g., Arabi-
dopsis to Arabidopsis) and between species (e.g., tomato to Arabi-
dopsis) (Figs. 1 and 2).

Methods
Plant material and growth condition
The seeds of Arabidopsis thaliana (accessions Col-0, No-0 and hpl1
mutant in the Ler-0 background34) were surface-sterilized and sownon
sterile Murashige and Skoog (MS) agar medium [1× MS salts, 1% (w/v)
sucrose, 0.01% (w/v) myoinositol, 0.05% (w/v) MES, and 0.5% (w/v)
gellan gum; pH 5.7 adjustedwith 1 NKOH]. After incubation in the dark
at 4 °C for 2 days, the plates were placed horizontally at 22 °C in a
growth chamber under continuous light (90–100 μmol/m2/s) for
approximately 2 weeks before use. After 2 weeks, Arabidopsis leaves
were numbered from oldest to youngest62. Two-week-old Arabidopsis
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(accessionNo-0 and Ler-0) plantswere transferred to soil and grown at
22 °C in a growth chamber under short-day conditions (8-h light/16-h
dark photoperiod, 90–100 μmol/m2/s) for approximately 2 months
before use. Two-week-old (accession Col-0) plants were used for Ca2+

imaging. Two-month-old plants (accession No-0 and Ler-0) were used
for preparation of homogenized leaf tissues and leaves that were
subjected to feeding by S. litura. Surface-sterilized tomato (Solanum
lycopersicum cv. Micro-Tom) seeds were incubated overnight at 4 °C
and sown on MS agar medium. Two-week-old plants were transferred
to soil and grown at 25 °C in a growth chamber under long-day con-
ditions (14-h light/10-h dark photoperiod, 90–100 μmol/m2/s) for
approximately 2 months before use. Tomato (Solanum lycopersicum
cv. Minicarol) seedlings potted in soil were purchased from a home
improvement store located in Saitama, Japan. These seedlings were
cultivated in a temperature-controlled room under long-day condi-
tions (14-h light/10-h dark photoperiod, 90–180 μmol/m2/s) at
25–29 °C for more than 12 days and then used to prepare leaves that
were consumed by S. litura.

Insects
Eggs of S. litura (Fabricius) (Lepidoptera: Noctuidae) were purchased
from Sumika TechnoserviceCo. Ltd. (https://www.chemtex.co.jp). The
insects were reared on a homemade artificial diet in the laboratory at
25 °C. Fifth-instar S. litura larvae were used for Ca2+ imaging.

DNA cloning and transformation
For the GCaMP3 constructs used for tissue-specific expression, geno-
mic sequences of the 5′ end of the open-reading frames of GC1 (1716
bp, At1g22690), RBCS1A (1976 bp, At1g67090), SULTR2;2 (2001 bp,

At1g77990), and ATML1 (3378 bp, At4g21750) were amplified via
polymerase chain reaction (PCR) targeting restriction enzyme sites
from Arabidopsis genomic DNA and used as the promoter sequences.
These fragments were digested and inserted into the corresponding
sites of the pAN19 vector containing the GCaMP3 and nopaline syn-
thase terminator (NOSt) sequence, resulting in construction of the
vectors pGC1::GCaMP3 NOSt, pRBCS1A::GCaMP3 NOSt, pSULTR2;2::G-
CaMP3 NOSt, and pATML1::GCaMP3 NOSt. The entire cassettes of
GCaMP3 sequences driven by tissue-specific promoters were isolated
via NotI digestion and cloned into the NotI site of the plant binary
vector pBIN42. All binary vectors were transformed into the Agro-
bacterium tumefaciens strain GV3101 via electroporation. Arabidopsis
plants were transformed using the floral dip method65. To establish
Arabidopsis mutants expressing GCaMP3, the entire cassette of
p35s::GCaMP3 NOSt31 was transformed into the slac1-2 and ost1-3
mutants. The primers used for cloning are detailed in Supplementary
Table 1.

Real-time [Ca2+]cyt imaging
Real-time [Ca2+]cyt imaging of the entire plants was performed as
described previously31. For Ca2+ imaging at the cellular level,
GCaMP3 signals were acquired using an upright confocal laser scan-
ning microscope (A1R, Nikon). GCaMP3 was excited using a 488-nm
laser/488-nmdichroicmirror, and fluorescent signals were detected at
510–560nm using the GaAsP detector of the microscope. NIS-
Elements imaging software was used to analyze GCaMP3 signals over
time at several regions of interest (ROI). To calculate fractional fluor-
escence changes (ΔF/F), the following equationwasused:ΔF/F = (F−F0)
/F0,where F0 denotes the averagebaselinefluorescencedeterminedby
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Fig. 9 | Volatile C6 aldehyde sensory transduction system in Arabidopsis.
Volatile C6 aldehydes, such as Z-3-HAL and E-2-HAL, in the atmosphere are initially
perceived by guard cells, which leads to [Ca2+]cyt increases. C6 aldehydes can enter
the interspace of leaf tissues via stomata, leading to the subsequent activation of

defense responses in mesophyll and vasculature cells. [Ca2+]cyt increases are
delayed in epidermal cells because of the presence of physical barriers, such as
cuticles.
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the average of F over the first 10 frames of the recording before
treatment.

Volatile treatment
β-Pinene and n-HAL were purchased from Wako Pure Chemical
Industries, Ltd. α-pinene and β-caryophyllene were obtained from
Tokyo Chemical Industry Co., Ltd. MeJA, E-2-HAL, Z-3-HOL, and Z-3-
HAC were purchased from Sigma-Aldrich Co. LLC. Z-3-HAL was
obtained from Nihon Zeon Co., Ltd. Each chemical was dissolved in
dimethyl sulfoxide (DMSO) to make a stock solution of 3.0M. To
examine the concentration dependency of the responses, Z-3-HAL was
dissolved in DMSO at concentrations of 0.05, 0.1, 0.25, 0.5, 0.75, and
1.0M. A 0.2-mL plastic tube cut with a scissor at a height of 5mm was
placed 5mm from the tip region of L1, and then 10 μl of each volatile
solution was applied.

To selectively treat L1 with Z-3-HAL, a hole was created on the side
of a square plastic dish with a cutter, and L1 was spatially segregated
from other parts of the plant by inserting it into the hole, as described
in Fig. 5c. Then, the hole was filled with 0.2% agarose gel, and Ca2+

imaging was performed.
For treatment with VOCs emitted by homogenized plants,

approximately 10 and 5 g of the aboveground parts of 2-month-old
Arabidopsis and tomato, respectively, were excised with a scissor and
homogenized with a pestle in a mortar. Disrupted leaf tissues were
immediately transferred to 1.5-mL plastic tubes and placed in close
proximity to receiver Arabidopsis expressing GCaMP3. Subsequently,
the MS agar plate was closed with a clear plastic cover to increase the
volatile concentration, and then Ca2+ imaging was performed.

To facilitate exposure to VOCs emitted from leaves consumed by
S. litura, weestablished anexperimental setup consisting of twoplastic
bottles, flow meters (NFM-V-P-A-1, TEKHNE Corp.), and air pump (HD-
603, FEDOUR), as shown in Fig. 1a. Briefly, approximately 7 g of the
aboveground parts of 2-month-old Arabidopsis and tomato plants was
excisedwith scissors. The severed leaves and 50–75 fifth instar S. litura
larvae were placed inside a plastic bottle (approximately 215 cm3). The
bottle was sealed with parafilm to prevent VOC leakage and incubated
for 30min. Prior to the experiment, air was pumped into an empty
plastic bottle at a rate of approximately 450mL/min and was directed
toward receiver Arabidopsis for 10min through a cotton-filled tip. This
step was crucial for facilitating the adaptation of plants to the
experimental conditions. Following adaptation, exposure to VOCs
emitted by leaves consumed by S. litura as well as Ca2+ imaging was
initiated by connecting the bottle and switching the valve. The air was
pumped into the bottle at a rate of approximately 200mL/min.

Recording of surface potential
Surfacepotential changesweremeasured as described previously with
minor modifications66. Ag/AgCl recording electrodes with a diameter
of 0.2mmwere prepared via chloridation with hypochlorous acid and
fixed to electrode holders. The recording electrodes were fixed to the
tip region of L1 of Arabidopsis plants with the application of 5-μL
droplets of 10mMKCl. The handmade Ag/AgCl wirewith a diameter of
0.5mm was used as a reference electrode and inserted into the agar
growth medium. For measuring surface potential changes, an opera-
tional amplifier (Axopatch 200A, Axon Instruments), headstage
amplifier (CV-201A headstage, Axon Instruments), digitizer (Digidata
1322A, Axon Instruments), and electrophysiology data acquisition
software (Clampex 9.2, Axon Instruments) were used. Simultaneous
measurements were performed using the SMZ25 microscope in a
Faraday cage. Surface potential changes were sampled at 5 kHz. To
compare the timing of the initial signal change with Ca2+ increases,
each data point was subsequently extracted at a reduced frequency of
0.5 Hz. For calculating the surface potential changes (ΔV), the follow-
ing equation was used: ΔV = V−V0, where V denotes the potential dif-
ference (PD) between the recording and the reference electrodes at a

certain time and V0 denotes the averaged baseline PD determined by
the mean of V over the first 10 frames of the recording before
treatment.

ABA treatment
L1 of Arabidopsis plants was harvested from 2-week-old plants, floated
in stomatal opening buffer solution (5mMMES and 50mMKCl; pH 6.1
adjusted with 1 N KOH) abaxial side down, and incubated under light
(90–100 μmol/m2 /s) for 2 h to open the stomata. Subsequently, ABA
(20 μM) (Sigma-Aldrich) was added to the solution to induce stomatal
closure. After 2 h of treatment, leaves were used for the subsequent
experiments. For Ca2+ imaging and surface potential recording,
detached leaves were transferred toMS agarmedium and treated with
3.0M Z-3-HAL as previously described. For stomatal aperture mea-
surement, epidermal strips were prepared by peeling away the epi-
dermal cell layer using a clear Scotch tape as described previously67.
The adaxial leaf surface was fixed with cover glass, and stomata were
observed under an upright confocal laser scanning microscope (A1R,
Nikon). The stomatal aperture was measured using NIS-Elements
imaging software (Nikon).

Pharmacological treatment
LaCl3·7H2O (Wako) and EGTA (Dojindo Laboratories) were dissolved in
liquid MS medium at a final concentration of 50mM. Eight-day-old
Arabidopsis seedlings were transferred into a Petri dish filled with
liquid MS medium containing either 50mM LaCl3 or EGTA and incu-
bated for 16 h prior to experiments. For thewashout assay,Arabidopsis
seedlings that had been treated with 50mM LaCl3 or EGTA were
uprooted from MS medium and washed 5 times with liquid MS med-
ium devoid of these inhibitors to remove any residual inhibitors.
Subsequently, the seedlings were transferred to an inhibitor-free MS
agar plate and incubated for 24 h before conducting Ca2+ imaging.

Total RNA isolation, cDNA synthesis, and quantitative PCR
Toextract total RNA, L1 and abovegroundpartswereharvested from2-
week-old Arabidopsis plants and 8-day-old Arabidopsis seedlings,
respectively (Fig. 4f and Supplementary Fig. 3b). The harvested tissues
were immediately frozen using liquid nitrogen. Total RNA was
extracted from flash-frozen leaf tissue using the Plant Total RNA Mini
Kit (FAVORGEN) following the manufacturer’s instructions. The sam-
ples were further treated with RNase-free DNase I to remove any
residual genomic DNA using the RNase-Free DNase Set (QIAGEN)
according to the manufacturer’s instructions. First-strand cDNA was
then synthesized from the totalRNA (500ng) in a 10-μL reaction (50ng
of total RNA/μL) with PrimeScript™ RTMaster Mix (Perfect Real-Time)
for RT-PCR (Takara). In a 96-well optical PCR plate (ABgene), cDNA
proportional to 10 ng of starting total RNAwas combined with 100nM
of each primer (Supplementary Table 1) and 7.5μL of 2× Brilliant III
Ultra-Fast SYBR Green QPCR Master Mix (Agilent Technologies) to a
final volume of 15μL. Using Arabidopsis ACT8 as an internal reference
for standardization, qPCR was performed using the CFX96 Touch
DeepWell Real-TimePCRSystemaswell asCFXMaestro Software (Bio-
Rad) with the following cycling parameters: 95 °C for 3min; 40 cycles
of 95 °C for 5 s and 60 °C for 10 s; and 1 cycle of dissociation from65 °C
to 95 °C with 0.5 °C increments. The expression of the marker genes
was quantified using the quantification cycle [Cq].

Volatile analysis
VOCs emitted from homogenized leaves were identified and quanti-
fied as described previously with some modifications68. Briefly, the
aboveground parts of Arabidopsis (No-0 and Ler-0 accession) and
tomato (Solanum lycopersicum cv. Micro-Tom) plants were excised
with a razor blade and weighed. Five hundred milligrams of tissues
were immediately placed into a mortar and homogenized using a
pestle and liquid nitrogen. Then, these tissues were transferred to a
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grass vial (22ml, Perkin Elmer). A MonoTrap cartridge (silica monolith
matrix coated with octadecyl silyl group and activated carbon, RGPS
TD, GL Sciences) was suspended in the headspace of the glass vial,
allowing it to adsorb VOCs for 10min. To quantify the volatilization of
Z-3-HAL from DMSO solution, the MonoTrap cartridge was placed
5mm from a 0.2-mL plastic tube containing 10 μL of 0.03M Z-3-HAL
solution in DMSO, and VOC adsorption was performed for 0.5, 1, 2 and
5min (Supplementary Fig. 5). Volatiles collected by the cartridge were
analyzed by a GC–MS system (GCMS QP2030, Shimadzu) equipped
with a thermal desorption system (TQ8040-NX, Shimadzu). Volatiles
were desorbed at 250 °C for 10min with He gas flow (70mL/min) and
concentratedonto a trap set at−25 °C. Volatilesweredesorbed again at
250 °C for 2min and fractionated with a DB-WAX capillary column
(30m × 0.25mm, 0.25 μm film thickness, Agilent). The GC oven pro-
gramwasmaintained at an initial temperature of 40 °C (held for 5min),
followedby a rampof 5.0 °C/min to afinal temperature of 200 °C (held
for 2min). The electron ionization mode with an ionization voltage of
70 eV was used, and them/zwas recorded from 40 to 400. To identify
each compound, we used the retention indices and MS profiles of the
corresponding authentic specimens. To construct calibration curves
for Z-3-HAL and E-2-HAL, a given amount of authentic compounds
(generous gift from Zeon Co., and purchased from FujifilmWako Pure
Chemicals, respectively) was directly injected onto the MonoTrap
cartridge and analyzed as previously described.

To estimate Z-3-HAL production from a single injury, we followed
a previously described method34. This estimation was based on the
detection of Z-3-HAL that elicits [Ca2+]cyt increases in Arabidopsis fol-
lowing leaf homogenization as described in Supplementary Fig. 2. The
total amounts of Z-3-HAL produced by homogenized Arabidopsis and
tomato leaves were quantified as 380.9 and 1718.7 nmol/gFW,
respectively. These values represent themaximumcapacity ofZ-3-HAL
synthesis by the leaves. Based on previous research34, the average
weight of a leaf was defined as 150 µg/mm2. Considering the estimated
area of a single injury to be 0.05 mm2 as previously described34, we
calculated that a single wound would result in the production of
approximately 2.9 and 12.9 pmol of Z-3-HAL for Arabidopsis and
tomatoes, respectively.

Statistical analysis
We performed Student’s t test for pairwise analysis and one-way ana-
lysis of variance followed by Bonferroni’s or Tukey’s post hoc tests
using GraphPad Prism (GraphPad Software, Inc.) to compare multiple
samples. Statistical significance was indicated by P <0.05. All data are
presented as the mean ± SE.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request. Source data are pro-
vided with this paper.
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