Buscador avanzado

Nota: la búsqueda puede tardar más de 30 segundos.

The collision of two black holes, detected for the first time by the Laser Interferometer Gravitational-Wave Observatory (LIGO), is seen in this image from a computer simulation. (Handout/Reuters)

Like many homo sapiens on planet Earth, I was thrilled by this month’s announcement of the first direct detection of gravitational waves. This finding surely ranks with the greatest scientific discoveries of the past 200 years.

Nobody in the scientific community doubted the existence of gravitational waves. They are absolutely required by Albert Einstein’s theory of gravity and have been indirectly inferred from other astrophysical observations. The great achievement here was the construction of the most sensitive scientific instrument ever built — able to measure changes in distance a thousand times smaller than the nucleus of an atom.

We now have a new sense organ with which to fathom the cosmos.…  Seguir leyendo »

The silhouette of a scientist against a visualization of gravitational waves on Feb. 11. Credit Julian Stratenschulte/European Pressphoto Agency

With presidential primaries in full steam, with the country wrapped up in concern about the economy, immigration and terrorism, one might wonder why we should care about the news of a minuscule jiggle produced by an event in a far corner of the universe.

The answer is simple. While the political displays we have been treated to over the past weeks may reflect some of the worst about what it means to be human, this jiggle, discovered in an exotic physics experiment, reflects the best. Scientists overcame almost insurmountable odds to open a vast new window on the cosmos. And if history is any guide, every time we have built new eyes to observe the universe, our understanding of ourselves and our place in it has been forever altered.…  Seguir leyendo »

‘Many physicists regard general relativity as a theory of exemplary beauty. But it’s difficult too.’ Photograph: AP

The discovery of gravitational waves has been hailed as yet another vindication of Albert Einstein’s theory of general relativity, unveiled a century ago. Indeed it is: among the theory’s predictions was that violent events in the universe involving immense masses – such as the collision and merging of two black holes – could set the fabric of spacetime ringing, the ripples spreading across the cosmos and stretching or squeezing space as they pass.

Experiments at the Advanced Laser Interferometer Gravitational-Wave Observatory facilities in Washington and Louisiana have detected these distortions, and it’s a tremendous, exhilarating moment for science. But it’s been barely noted what a deeply strange, perhaps unprecedented situation this is too.…  Seguir leyendo »

The results of a big physics experiment have delivered a long-sought, hard-won and resounding victory to Albert Einstein, confirming yet again that the revolutionary theory of gravitation he put forward a century ago is the real deal. The findings cement Einstein's near-mythical stature as one of the greatest scientists of all time.

In 1915, after almost a decade of work, Albert Einstein outlined his sensational gravitation theory, which he called “general relativity.” It characterized gravity as the result of the curved geometry of space and time, and it predicted the existence of gravitational waves. After years of searching, the Laser Interferometer Gravitational-Wave Observatory, or LIGO, finally observed gravitational waves from two colliding black holes.…  Seguir leyendo »

Fue el 14 de septiembre de 2015, pasados unos segundos de las diez menos diez. No nos dimos cuenta, claro. De entre la multitud de fenómenos físicos que nos perturban diariamente, en ese preciso instante, uno entre la multitud venía de muy lejos (10 elevado a 22 metros, más de 500 veces la distancia a nuestra galaxia vecina Andrómeda). Y duró muy poco, 0.2 segundos.

Codificado en la forma de la onda, esa vibración nos envía el mensaje de dos viejos náufragos fundiéndose en uno. No son cualesquiera. Han de ser dos agujeros negros de masas aproximadamente 36 y 29 veces la masa del Sol uniéndose en uno final de 62 veces la masa del Sol para producir esa señal singular.…  Seguir leyendo »