Mosaic Warfare Dr. Tim Grayson Director, DARPA/STO 27 July 2018 ### **Asymmetric Advantages Eroding** Chinese J-31 Stealth Fighter Russian PAK-FA (T-50) Stealth Fighter Russian SS-N-26 Cruise Missile North Korean Musudan IRBM Chinese KJ-2000 Adversaries have had 25+ years after Desert Storm to analyze U.S. playbook and develop competing weapon systems Iranian Fateh-110 SRBM Chinese PL-15 Missile Source: UM Russian S-400 IADS IRBM: Intermediate Range Ballistic Missile SRBM: Short-Range Ballistic Missile ### A modern complication: a slow reaction 6 threat generations # Time to field exquisite DoD systems untenable, but there is hope It's not simply complexity or software content driving increased time-to-market ### How we win – pivot to lethality ### MISSION-FOCUSED LETHALITY - cannot expect to continue to cover down with invulnerable monolithic systems - incremental improvement on current paradigm is untenable - lethality through diversity of options - impose cost/penalty for any adversary action - adversary left without good options doesn't play ### The promise and payoff of distributed, disaggregated SoS #### Limitations: Vulnerable to evolving adversary kill-chains Difficult to upgrade ### first principles see first • shoot first • win take action with minimal risk be resilient and adaptable (OODA) ### Advantages: See first, shoot first via distribution Heterogenous Adaptable Spreads risk Can break adversary kill chain ### Distributed systems must be Mosaic to win pieces, interfaces painstakingly engineered can only be assembled in one way creates a distributed monolith retains legacy vulnerabilities, introduces new set creates an adaptable, resilient, distributed system retains, improves legacy capability, mitigates vulnerabilities UNCLASSIFIED 8 # How do we make "joint multi-domain battle" fast and adaptive? UNCLASSIFIED # Mosaic Warfare = joint multi-domain lethality at speed ### Mosaic technologies must address the entire combat lifecycle | CK" | |------| | "Sta | | saic | | Mo | | the | | Decision | today
months -
years | What effects applied where will meet objectives? How should assets be provisioned? How, when will assets get there? | goal
days -
months | |------------------------|----------------------------|---|--------------------------| | Composition | months - years | What elements can deliver desired effect? How can effects delivery be "verified" at mission-planning speed given situation uncertainty? | goal
hours -
days | | Mission Planning | today days - months | Employ effects chains during campaign Integrate autonomous, semi-autonomous effects chains Train humans to operate with Mosaic elements, chains | goal
hours | | Resource
Management | today
hours -
days | What assets are assigned to what effects chain Optimize resources against competing demands, objectives Abstract assets for allocation decision making | goal
mins -
hours | | Task Planning | today
hours -
days | Task assignment for specific systems (e.g. within a swarm) How can tasking be distributed to heterogeneous systems in a way it can be understood? | goal
secs -
mins | | Execution | today
mins - | How are systems physically connected (e.g. comms links)? Can non-native software run on systems? | goal
ms - | # The Pathway to Mosaic Warfare | | Distributed Kill Chain | System-of-Systems | Adaptive Kill Web | Mosaic Warfare | |-------------|---|---|---|---| | Example | NIFC-CA | SoSITE | TBD | TBD | | Description | Manual integration of existing systems | Systems prepped for multiple battle configurations | Semi-automated ability to select
a pre-defined effects web prior
to mission | Ability to compose new effects webs at campaign time | | Benefits | Extends effective range Increases engagement opportunity | Enables faster integration and
more diverse kill chains | Allows pre-mission adaptation More lethal, imposes
complexity on adversary | Adaptable to dynamic threat
and environment Scaling to many simultaneous
engagements | | Challenges | StaticLong to buildDifficult to operate and scale | Each architecture static Limited ability to adapt Cannot add new capabilities on the fly Difficult to operate and scale | Static "playbook"Limited number of kill chainsMay not scale well | Scaling limited by human decision makers |